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Abstract
Forest biomass monitoring is at the core of the research agenda due to the critical impor-
tance of forest dynamics in the carbon cycle. However, forest biomass is never directly 
measured; thus, upscaling it from trees to stand or larger scales (e.g., countries, regions) 
relies on a series of statistical models that may propagate large errors. Here, we review 
the main steps usually adopted in forest aboveground biomass mapping, highlighting the 
major challenges and perspectives. We show that there is room for improvement along the 
scaling-up chain from field data collection to satellite-based large-scale mapping, which 
should lead to the adoption of effective practices to better control the propagation of errors. 
We specifically illustrate how the increasing use of emerging technologies to collect mas-
sive amounts of high-quality data may significantly improve the accuracy of forest car-
bon maps. Furthermore, we discuss how sources of spatially structured biases that directly 
propagate into remote sensing models need to be better identified and accounted for when 
extrapolating forest carbon estimates, e.g., through a stratification design. We finally 
discuss the increasing realism of 3D simulated stands, which, through radiative transfer 
modelling, may contribute to a better understanding of remote sensing signals and open 
avenues for the direct calibration of large-scale products, thereby circumventing several 
current difficulties.
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1 Introduction

The large uncertainty associated with the global spatio-temporal dynamics of forest carbon 
(C) is a major obstacle to the projection of future atmospheric  CO2 concentrations and the 
implementation of mitigation strategies. Satellite observations of land-use changes are cur-
rently reliable enough to provide robust information on deforestation dynamics (Hansen 
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et al. 2013). However, the associated C release remains uncertain because broad-scale C 
mapping applications from satellite data still convey large uncertainty (Mitchard et  al. 
2013; Huang et al. 2015; Rodriguez-Veiga et al. 2017). Even higher uncertainty is associ-
ated with C fluxes related to forest degradation and regrowth because small changes in 
the C stocks in closed-canopy forests are challenging to detect remotely (Bustamante et al. 
2016), resulting in an underestimation of forest degradation globally (Pearson et al. 2017).

Forest aboveground biomass (AGB), the main proxy for forest C stock, is rarely 
directly measured, either in the field or via remote sensing (RS) (Clark and Kellner 
2012). AGB estimations are thus derived from statistical models with their own under-
lying assumptions that can generate random and/or systematic errors when violated. The 
way the errors that are associated with these models propagate up to the final AGB esti-
mate is, however, generally poorly understood and accounted for. A simple illustration 
of how RS–AGB models may produce inaccurate AGB density maps is shown in Fig. 1. 
First, the propagation of a uniform bias over calibration data (e.g., field plot AGB esti-
mates) conveys a systematic over- or underestimation, which may be straightforward 
to correct in the final density map provided that the bias can be quantified (Fig. 1b). A 
more overlooked but common effect is the propagation of a non-uniform bias, leading 
the RS model to overestimate small AGB values and underestimate large AGB values, 
resulting in density maps flattened around the mean (Fig. 1c; Avitabile et al. 2016; Xu 
et al. 2016). Such bias may originate from three sources: (1) a non-uniform bias exists 
in the calibration dataset, such as an AGB over- or underestimation in young versus 
old successional forests, which can be corrected if the non-uniform pattern of errors 
is well identified a priori; (2) the low sensitivity of RS signals to high AGB values 
generally results in an AGB underestimation (i.e. signal saturation), while in low AGB 
open areas, non-forest land surfaces (i.e. surface roughness, non-woody vegetation) also 
contribute to the remotely sensed signal, leading to an overestimation of forest AGB; 
(3) in regression models, violation of the assumption of low/non-existent error in the 
independent variable (the “observed” AGB) results in a systematic underestimation of 
the model slope (Fuller 1987; Réjou-Méchain et al. 2014). Finally, the major source of 

Fig. 1  Conceptual representation of common bias patterns found in remote sensing AGB models
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uncertainty in RS-based models is obviously the poor signal sensitivity to AGB varia-
tions, which makes the post-correction of density maps impossible (Fig. 1d).

In this paper, we review the sources of errors that may occur during the process of 
upscaling AGB estimates from ground to RS data and provide suggestions for reduc-
ing these errors (Fig. 2). Section 2 illustrates that field-based estimates—often improp-
erly seen as “ground truth”—most likely convey more important errors than gener-
ally assumed. Section  3 discusses the issues associated with mismatching field-based 
AGB estimates to RS data. Section  4 presents a multi-step calibration strategy aimed 
at bridging field and satellite measurements through airborne or spaceborne very high-
resolution RS products. This section also highlights the pitfalls and promises of such a 
strategy. Section  5 discusses the common problems associated with broad-scale AGB 
extrapolations for regional mapping through inexpensive satellite imagery. Finally, 
Sect.  6 reviews physical modelling approaches and discusses how they may improve 
our ability to map AGB. These sections mostly focus on tropical forest examples, where 
uncertainty in C dynamics is the highest globally (Mitchard 2018), although most of the 
issues that are discussed are also concerns in other forest biomes.

2  Improving Field‑Based AGB Estimation

Uncertainty in field-based AGB estimation has recently become a matter of concern for the 
RS community (e.g., Mermoz et al. 2014, 2015; Longo et al. 2016; Xu et al. 2017; Bouvet 
et  al. 2018; Jucker et  al. 2018a). For instance, Chen et  al. (2015) developed an analyti-
cal framework to track the sources of errors from field measurements in airborne LiDAR-
AGB predictions. The authors estimated that field-based uncertainty contributed only 10% 
of the total pixel-level uncertainty at a 0.16-ha resolution (see also Longo et  al. 2016). 
However, the statistical framework developed by these authors rested upon the assumption 
that tree-level AGB estimation errors are independent within and between field plots; thus, 

Fig. 2  Flowchart illustrating the main sections of this paper
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they average out in RS models. While this assumption is common (e.g., Chave et al. 2004; 
McRoberts and Westfall 2013; Longo et  al. 2016), it is often violated, generating over-
looked biases in AGB maps.

Field-based AGB estimates at the plot level are obtained by summing individual AGB 
values for all trees within the plot. At the tree level, AGB is generally estimated using an 
allometric model that combines key tree features, typically the stem diameter (D), total 
tree height (H) and wood density (WD; Chave et al. 2005, 2014). While D may suffer from 
important measurement errors (Clark 2002), significant efforts have been made towards 
protocol standardization (Phillips et  al. 2009; Condit et  al. 2014) to warrant negligible 
errors, at least in scientific plots (Chave et al. 2004; Molto et al. 2013). However, as shown 
below, the two other predictors, as well as the AGB model itself, may convey systematic 
error components within and between plots that may directly propagate into RS models.

2.1  Uncertainty in Wood Density

Individual tree AGB is directly proportional to WD, which varies by as much as tenfold 
among tree species (Chave et  al. 2009). However, WD is rarely measured on individual 
trees in forest inventories, and in most cases, a mean specific value is assigned from inde-
pendent databases to all trees of a given taxonomic category, often higher than the spe-
cies level. This approximation is very crude beyond the genus level (Flores and Coomes 
2011); however, it is common in the tropics because of inaccurate botanical identifications 
(Gomes et al. 2013) or the limited availability of WD data (Chave et al. 2009). For exam-
ple, in the well-known pantropical forest inventory dataset generated by Al Gentry, which 
includes 43,000 trees (> 8000 taxa), more than one-third of the trees could not be assigned 
a WD value at the species or genus level from the Global Wood Density Database (Chave 
et al. 2009; Zanne et al. 2009). Given that most tropical tree taxa are spatially aggregated 
at various scales (Condit et  al. 2000), uncertainty in WD estimates is expected to cause 
spatially structured errors, potentially generating biases in plot-level AGB estimates (Baker 
et al. 2004). One way to mitigate this error source is to rely on permanent scientific sites 
for model calibration. For instance, in the 50-ha Center for Tropical Forest Science (CTFS) 
permanent plot at Barro Colorado Island, Panama (Condit 1998), less than 2% of the trees 
have WD values assigned at a coarser taxonomic resolution than the genus level. In addi-
tion, repeated censuses also strongly minimize field measurement or encoding errors and 
reduce the number of missing trees (Lopez-Gonzalez et al. 2011), providing high-quality 
calibration data for RS applications (Chave et al. this issue).

The assignment of a WD value to an individual tree at the species level does not, how-
ever, ensure bias-free estimates. WD is known to vary widely between individuals of the 
same species and even within individual trees (Tarelkin et al. 2019; Swenson and Enquist 
2008; Bastin et al. 2015a; Wassenberg et al. 2015). For example, species having at least 10 
observations in the Global Wood Density Database (n = 109) exhibit a mean WD variation 
of 9% around the mean. Given that two-thirds of the taxa in that dataset are documented 
with a single measure, the effects of intra-specific variations in WD on AGB estimates 
are currently difficult to quantify. Intra-individual variations may also have a strong impact 
on field AGB estimations, e.g., when converting volume estimations (e.g., from terrestrial 
LiDAR, see below) into biomass. A recent study conducted in Cameroon showed a signifi-
cant decrease in WD with height for most species; thus, the use of WD at the trunk base 
to convert volume into biomass led to an AGB overestimation of approximately 10% at 
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the plot level (Sagang et al. 2018). The authors, however, demonstrated that vertical vari-
ations could be predicted from basal WD; thus, these variations could be controlled for 
in biomass estimations, which was recently confirmed in a large dataset from 6 different 
countries in central Africa (Momo Takoujdou et al. in preparation).

A lesson learned from this short review is that more efforts are needed to collect WD 
data for tropical taxa using standardized protocols (Williamson and Wiemann 2010) while 
accounting for all major sources of variation. Given the time and cost of wood core analy-
ses, non-destructive and rapid WD measurement techniques are appealing, such as torsi-
ometers, Pilodyns, nail withdrawal tools or emerging electronic devices to measure drilling 
resistance (reviewed in Gao et al. 2017). For instance, the use of an empirical model devel-
oped from Pilodyn measurements led to a predicted WD error of 15% for 1427 trees from 
four continents.

2.2  Uncertainty in Tree Height

As for WD, tree height is not systematically available from field plot inventories, and H–D 
models are often used to estimate the height (H) of individual trees from stem diameter 
(D) measurements. These models are built from H measurements that are subjected to 
errors, especially in dense forest canopies. Indeed, in addition to a strong operator effect, 
Larjavaara and Muller-Landau (2013) showed that the two most common H measurement 
methods (the so-called tangent method, which combines horizontal distance to the trunk 
and the angle to the treetop, and the “sine” method, which combines the angle and distance 
measurements to the treetop) led to significantly contrasting results, with an underestima-
tion of ca. 20% with the “sine” method. Based on an original dataset of H measurements 
of 457 trees using both a laser hypsometer in the field and LiDAR systems (airborne or 
terrestrial), we confirm that the “sine” method results in a systematic bias of − 7% in the H 

Fig. 3  Comparison between 
height measurements inferred 
from airborne or terrestrial 
LiDAR acquisitions and meas-
ured in the field using a laser 
hypsometer (TruPulse 360R for 
the 151 trees from Cameroon 
and Haglöf Laser Vertex for the 
306 French Guiana trees). The 
relationship suggests that tree 
height measurements from laser 
rangefinders underestimate the 
tree height by 7.3%. The red line 
illustrates the output of a stand-
ard major axis regression (i.e. 
minimizing errors in both X and 
Y), and the dotted line represents 
the 1:1 line
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estimations (Fig. 3). The way this bias propagates into AGB estimates through direct meas-
urements or H–D models depends on whether a similar bias occurred in the destructive 
reference dataset used to build the AGB allometric model.

Beyond measurement errors, H–D allometric models represent a major source of uncer-
tainty in field-based AGB estimates because this allometry exhibits large spatially struc-
tured variations at local, regional and continental scales (Ketterings et al. 2001; Feldpausch 
et al. 2011; Vieilledent et al. 2012; Vincent et al. 2012b; Réjou-Méchain et al. 2015). To 
account for broad-scale variations, both regionally averaged H–D relationships (Feld-
pausch et  al. 2012) and bioclimatic proxies (Eq. 6 in Chave et  al. 2014) have been pro-
posed. These approaches significantly reduce AGB model errors in tropical regions, but 
certain local deviations may remain quite large. For instance, in the central Congo Basin, 
forest AGB was overestimated by 24% when the Feldpausch et  al. (2012) regional H–D 
relationship was used instead of a local relationship (Kearsley et al. 2013). In the Khao Yai 
Forest Reserve in Thailand, we found that the bioclimatic proxy proposed by Chave et al. 
(2014) underestimated H by 26% (Jha, Chanthorn, Réjou-Méchain, unpublished). Finally, 
both approaches resulted in an AGB underestimation > 20% in a Brazilian forest (Hunter 
et al. 2013). Considering such uncertainty in only H estimations, any RS–AGB model cali-
brated in these regions would result in a systematic bias > ± 20% in AGB estimations (case 
B in Fig. 1), i.e. an error margin larger than the commonly admitted accuracy.

H–D relationships may also strongly vary between plots within landscapes. Average 
differences in H of approximately 10% for a given D were found between plots within 
areas < 10 km2 in French Guiana (Vincent et al. 2012a, 2014; Réjou-Méchain et al. 2015). 
More specifically, the H–D relationship was found to strongly vary along a successional 
gradient in Thailand (Chanthorn et  al. 2017); hence, this relationship varied concomi-
tantly with forest AGB, potentially leading to a non-uniform bias in RS models (case of 
Fig. 1c). Various strategies may be adopted to better account for these inter-plot variations. 
The most straightforward strategy is to acquire H data for at least a subsample of trees 
to calibrate plot-specific H–D allometries (Vieilledent et  al. 2012; Hunter et  al. 2013), 
even though care must be taken with respect to the H measurement method and sampling 
strategy (see above and Sullivan et al. 2018). Another way to better account for systematic 
variations in H–D allometry between plots would consist of finding local covariates. For-
est structural metrics that reflect stand competition intensity or soil fertility were found to 
explain some variation, but to a relatively small extent (Feldpausch et al. 2011; Banin et al. 
2012). In contrast, mean canopy height has been found to correlate well with tree slender-
ness (a higher H for a given D), both within species and at the community level (Vincent 
et al. 2012a). Hence, when a high-resolution canopy height map is available, the accuracy 
of individual H estimations from D measurements can be significantly improved by adding 
local canopy height metrics to the H–D model (e.g., median of the canopy height model 
in a 50-m window centred on each tree). Using this approach, the individual H error was 
reduced by 14%, leading to a threefold decrease in the plot-level AGB bias at the Para-
cou site, French Guiana (n = 2141 trees; Vincent et al. unpublished). This result adequately 
illustrates that if field-based estimates generally feed into RS models, they may also them-
selves be improved by RS measurements. With the recent advances in our ability to extract 
individual trees from dense LiDAR point clouds (Ferraz et al. 2016), H measurements may 
be directly assigned to individual canopy trees that account for a large share of the stand 
AGB (Bastin et  al. 2015b). In conclusion, better integration of LiDAR technologies and 
field measurements has the potential to substantially reduce the uncertainties associated 
with tree height variations.
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2.3  Uncertainty in AGB Allometric Equations

The allometric conversion of individual tree attributes into AGB is a major source of 
uncertainty in tree and plot AGB estimates (Chave et al. 2004; Molto et al. 2013). At the 
tree level, the predictive error associated with the pantropical allometric model of Chave 
et al. (2014) reaches almost 40% (the total error is slightly above 50%), but if considered 
random, this error rapidly averages out as the number of trees increases in the predicted 
population (Réjou-Méchain et  al. 2017). A cross-validation assessment of this model 
indeed revealed a mean bias across sites of only 5% but exceeded 30% in 8 out of 58 sites 
(Chave et al. 2014). Models that assume universal allometry may thus be liable to strong 
and uncontrolled local bias, which is generally ignored in error propagation schemes. This 
site effect may reflect differences in species composition or biotic (e.g., competition inten-
sity) or abiotic (e.g., soil fertility) conditions. For instance, the use of biome-specific rather 
than species-specific allometries resulted in an AGB prediction bias between − 18% and 
+ 14% for a Brazilian mangrove forest (de Souza Pereira et al. 2018).

Crown allometry variations among sites have also been identified as a major source 
of uncertainty in pantropical allometric models (Goodman et  al. 2014). The proportion 
of the crown to the total tree AGB is indeed highly variable among trees (3–88%) and 
tends to increase with the increase in tree AGB beyond 10 Mg, reaching 50% on average 
for trees > 45 Mg and 34% for trees < 10 Mg (Ploton et al. 2016). This systematic change 
in tree shape with total tree AGB explained 20% of the underestimation of the AGB of 
large trees reported by Chave et al. (2014). Using simulations, Ploton et al. (2016) showed 
that, for 1-ha plots, this bias led to systematic errors ranging from − 26% to + 16% that 
depended on the frequency of large trees, thus introducing a non-uniform bias in AGB 
maps (Fig. 1c). Integrating crown dimensions in allometric models strongly reduces this 
allometric uncertainty. Jucker et al. (2017b) even proposed an AGB allometry using crown 
size and tree height, i.e. tree dimensions potentially directly measurable by means of RS 
(e.g., Ferraz et al. 2016).

Another potential source of uncertainty in the allometric conversion of tree attributes 
into AGB is the existence of hollow parts in the trunks or branches. Hollow parts are 
implicitly accounted for in AGB estimates when allometric equations are built on directly 
weighed trees. However, direct weighing is rarely possible for large trees, which are also 
more prone to hollows (Fig. 4). As a consequence, volume estimation is usually preferred 
for large trees (Henry et al. 2010; Fayolle et al. 2013; Chave et al. 2014), which results in 
potential estimation bias (Moundounga Mavouroulou et al. 2014). For instance, Nogueira 
et  al. (2006) found that hollows occurred in ca. 10% of the trees > 5  cm in diameter in 
Brazil, but hollows occurred in up to 50% of trees > 80 cm in diameter (but n = 4 in that 
study). This condition, however, resulted in a bias ≤ 1% in the AGB in a 1-ha plot, which is 
consistent with the results of Clark and Clark (2000) in Costa Rica (hollow parts accounted 
for only 1.7% of the outer volume). Conversely, other studies reported much higher errors 
in other sites (Rodrigues and Valle 1964 cited in Nogueira et al. 2006; Dickinson and Tan-
ner 1978), suggesting that the frequency of hollow trees may vary between sites and may 
also be a source of uncertainty in AGB maps. For instance, in over 523 forested sites in 
south-eastern Australia, the number of hollow trees strongly varied between sites with a 
skewed distribution, i.e. many study sites contained few or no hollow trees, but some sites 
contained up to 13 hollow trees per ha (Lindenmayer et al. 1991). Interestingly, the occur-
rence of hollow trees was well predicted by topography, stand age, region, logging history 
and the dominant species. Similarly, in a subtropical forest in China, the density of hollow 
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trees was approximately 90 trees per ha, which is much higher than that in temperate for-
ests, and hollow occurrence varied significantly with species, crown position and topo-
graphical context (Liu et  al. 2018). However, more studies are needed to better quantify 
the impact of hollows or simply wood decay on stand AGB estimates, using, for instance, 
non-destructive wood imaging techniques (Arciniegas et al. 2014). Marra et al. (2018) used 
sonic and electrical resistance tomography to identify internal wood decay without appar-
ent cavities that resulted in C loss in the trunk ranging from 0.1 to 24% (5–37% with an 
apparent cavity).

2.4  Perspective on Field‑Based AGB Estimation

The use of terrestrial laser scanners (TLS) has recently emerged as a credible alterna-
tive to destructive approaches for the estimation of tree AGB (Calders et al. 2014; Disney 
2018; Gonzalez de Tanago et  al. 2018; Lau et  al. 2018; Momo Takoudjou et  al. 2018). 
This technology and the associated processing methods are rapidly progressing but still 
face a number of challenges in tropical moist forests, such as the high degree of occlusion, 
the difficulty in segmenting individual trees in intricate vegetation (Trochta et  al. 2017; 
Calders et al. 2018) and in filtering out leaves (Béland et al. 2014; Ma et al. 2016; Calders 
et al. 2018), which is a required step prior to tree structure reconstruction from the point 
cloud (Momo Takoudjou et  al. 2018). Overcoming these issues would take us one step 
closer to an automated routine for reconstructing entire forest stands, thereby producing 
large amounts of data to feed allometric models (Raumonen et  al. 2013). However, the 
above-mentioned problems associated with poor WD estimates and the presence of hollow 
trees remain a serious difficulty for TLS to overcome, which inherently measures the outer 
volume.

Fig. 4  Increase in hollow occur-
rence with tree diameter in a 
French Guiana dataset. In total, 
17% of a sample of 3746 stems 
with DBH > 50 cm in French 
Guiana were found to be hollow. 
This proportion appeared to be 
strongly positively related to tree 
size. Courtesy of L. Descroix, 
unpublished
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Another perspective from the advent of LiDAR technology is the possibility of 
directly estimating stand-level AGB instead of summing the AGBs of individual trees. 
For instance, Vincent et al. (2014) analytically derived a stand-level AGB equation based 
on stand volume-weighted WD, tree density, mean quadratic diameter and mean canopy 
height, which, as discussed above, controls the local H–D allometry. Stand density and 
mean quadratic diameter can both be extracted from TLS data (e.g., Bauwens et al. 2016) 
more accurately and more easily than individual tree volumes, while a canopy height 
model within a scanned plot can be derived from the same TLS data. Once such a relation-
ship is calibrated, airborne laser scanners (ALS, including those on unmanned aerial vehi-
cles (UAVs)) suffice to derive AGB estimates from standard stem diameter measurements 
and WD estimates. However, the calibration step is challenging because it would ideally 
rely on destructive stand-level measurements. Such an approach would probably limit the 
propagation of individual errors, especially when neither tree height measurements nor a 
reliable local H–D allometry is available.

3  Matching Field and RS Measurements

When an RS signal is related to a field-based estimate of forest AGB, the basic assumption 
is that they both measure the same area and objects. This assumption is often violated in 
practice, leading to large uncertainty in the final AGB density maps (Gobakken and Naes-
set 2009; Frazer et al. 2011; Mascaro et al. 2011; Réjou-Méchain et al. 2014; Saatchi et al. 
2015). Here, we review important sources of mismatch between field and RS measure-
ments and identify ways to overcome them.

3.1  Geolocation Uncertainty

Geolocation mismatch between RS and field measurements is an obvious source of 
uncertainty (Frazer et al. 2011). Ground measurements are generally geolocated using 
a global navigation satellite system (GNSS) receiver, whose accuracy is known to vary 
with receiver quality or topographical and vegetation conditions by up to 2 orders of 
magnitude (Johnson and Barton 2004). In particular, GNSS accuracy decreases expo-
nentially with the increase in canopy cover (Sigrist et  al. 1999). From simultaneous 
acquisitions, Johnson and Barton (2004) found that 20% of the measurements had 
geolocation errors > 10 m under forest cover (due to multipathing effects), but only 2% 
in a nearby open area. Under unfavourable satellite conditions, the error even exceeded 
200  m under forest cover. Under a dense forest cover in Gabon, a recent high-grade 
GNSS resulted in a mean measurement error of 5  m with 2.5% of extremes greater 
than 70 m (Fig. 5; Réjou-Méchain and Barbier, unpublished). Differential GNSS cor-
rections did not reduce this uncertainty because vegetation cover prevents the use of 
phase-shift information. However, geolocation errors rapidly averaged out as the num-
ber of measurement points increased in either space (over a few tens of metres) or time 
(over several hours or days), stabilizing below 5  m with 20 measurement points and 
below 3 m with 50 measurement points. This result confirms the recommendation of 
Segrist et al. (1999) to collect at least 20 GNSS measurement points at different loca-
tions or times to accurately geolocate a field plot in dense forest conditions.
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3.2  Acquisition Angle

Satellite-borne instruments do not always measure forests vertically (i.e. in nadir 
mode). When an active penetrating signal (e.g., RADAR or LiDAR) is sent with a 
large (pluri-metric) footprint size and a significant incidence angle (typically > 30° for 
RADAR sensors; Saatchi et al. 2011a; Robinson et al. 2013), the forest volume meas-
ured in field plots and intercepted by the satellite sensor does not correspond to the 
same physical objects, especially for small plots or in topographically complex areas 
(Villard and Le Toan 2015). Using theoretical simulations, Réjou-Méchain and Barbier 
(unpublished) found that an incidence angle of 30° may lead to volume differences of 
ca. 55, 20 and 10% for plot and pixel sizes of 20, 50 and 100 m, respectively, even if 
existing surrounding trees partly compensate for this mismatch. Thus, any RS signal 
acquired with a significant incidence angle should not be calibrated and validated with 
small field plots or in small patches of heterogeneous vegetation.

3.3  Mismatch in Tree Representation

The mismatch between the RS and field measurements may also be due to differences in 
tree representation. Conventional field measurements for AGB estimations are “trunk-
based”, i.e. a tree is considered to belong to a given field plot when half its trunk base 
section is within the plot limits, irrespective of the proportion of its vertical crown pro-
jection falling outside the plot. With RS approaches, AGB is measured from an area-
based perspective, i.e. only the plant material with a ground projection within the 
area of interest is considered. Using LiDAR data, Mascaro et  al. (2011) showed that 

Fig. 5  Plot positioning error in a dense forest from Gabon. a The 75th percentile of mean position bias as 
a function of the number of GNSS points taken along plot limits from random point sets taken among 207 
GNSS points (using a Trimble L1/L2 GEOXT 7000 rover GNSS device). The dotted line represents the 
background error level (e.g., due to imperfections in the relative positions of field marks). b An example 
of plot position bias for a 60 × 100 m plot at the 75th percentile of the error distribution using random sets 
of 4 GNSS points to estimate the transformation from local to UTM coordinates. Reference positions were 
provided by a professional topography consultant using a total station. Background colours show maximum 
canopy height (from brown to blue) from terrestrial laser scanning data
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accounting for this edge effect reduces the LiDAR-AGB model error by 55, 21 and 4% 
at 20-, 50- and 100-m resolution, respectively, i.e. with a decrease in the perimeter-to-
area ratio, the associated edge effects logically vanish because the proportion of trees 
with crowns crossing the plot edge decreases with the increase in plot size.

Differences in tree representation may also impact the estimates of forest C dynam-
ics. Réjou-Méchain et  al. (2015) compared the 4-year AGB dynamics inferred from 
repeated field plot censuses and LiDAR acquisitions and found relatively poor agree-
ment between the two estimates; these authors concluded that different components 
of forest dynamics are measured by the two approaches. Natural canopy dynamics is 
dominated by many small-scale events that are captured by LiDAR data but not by field 
measurements (Kellner and Asner 2009; Leitold et  al. 2018). Similarly, leaf density, 
which influences LiDAR estimates but not field estimates, regenerates faster than woody 
biomass after a disturbance (Asner et al. 2006). Thus, any dynamics inferred from RS 
measurements should be interpreted differently from the dynamics inferred from the 
ground.

3.4  Temporal Mismatch

The temporal difference between RS and field measurements is a common problem in 
RS studies. The impact of such temporal mismatches is difficult to predict in natural for-
ests due to the high stochasticity of tree mortality. This stochasticity, however, decreases 
with the increase in plot size (Chambers et al. 2013); hence, the error associated with 
the temporal difference between measurements is likely to decrease with increasing plot 
size in the absence of major climate anomalies (e.g., El Niño events) or major distur-
bances, such as hurricanes or fires, which may be detected with Landsat (Kennedy et al. 
2010) or MODIS (Justice et al. 2002) time series data. (MODIS is the Moderate Reso-
lution Imaging Spectroradiometer aboard the NASA Terra and Aqua satellites.) In this 
case, estimated growth rates may be used to compensate for the time lag in AGB esti-
mates from field and RS data (Avitabile and Camia 2018).

3.5  Scale Mismatch

The issue of scale mismatch between calibration field plots and RS data pixels is chal-
lenging, particularly when coarse-resolution RS products are calibrated with numerous 
small field plots such as national forest inventory data collected in sampling units less 
than 0.1 ha in size. For instance, the pantropical 1-ha resolution AGB map of Saatchi 
et al. (2011b) was calibrated using field plots that were typically ≤ 1 ha in size, hence 
representing a local sampling rate of 1% at best. For instance, Réjou-Méchain et  al. 
(2014) showed that the use of calibration plots smaller than the RS pixels generates 
large sampling errors, producing significantly biased AGB maps (case Fig.  1c). For a 
given pixel-to-plot size ratio, the error due to local AGB variability is larger for small 
plots and pixels than for large plots and pixels (Réjou-Méchain et al. 2014). Thus, stud-
ies aiming at building coarse-resolution maps face the challenge of minimizing this 
sampling error. A common practice is to spatially aggregate field estimates to better 
match the RS pixel resolution; however, this approach results in large uncertainty in the 
associated sampling error (Avitabile and Camia 2018). A more reliable approach con-
sists of using intermediate-resolution RS data, such as very high-resolution images, to 
bridge the gap.
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4  Bridging Field and Satellite‑Based Measurements

Field plots are generally too costly and time-consuming to establish to be densely and 
evenly distributed within landscapes. Consequently, RS models are often calibrated with 
field plots that are not representative of the area of interest (Marvin et  al. 2014). Fur-
thermore, field plot size rarely approaches the size of coarse-resolution RS pixels (e.g., 
MODIS, ca. 250 m), which are the current basis of the wall-to-wall biome or global map-
ping. This problem generates the mismatch issues discussed in the previous section. To 
overcome these problems, a multi-step upscaling approach involving RS data of very high 
spatial resolution (VHSR) can provide intermediate-scale biophysical maps to be then used 
as reference to calibrate wall-to-wall RS data of coarse resolution and broad swaths (Asner 
et al. 2013; Baccini and Asner 2013; Xu et al. 2017). In this section, we first review the 
VHSR RS products that may be used in such an approach and then discuss the caveats and 
perspectives associated with such a multi-step upscaling strategy.

4.1  Airborne LiDAR

Airborne LiDAR (ALS), with its ability to penetrate the canopy, provides a fine 3D 
description of the forest structure and represents an excellent option for linking field 
plots to broad-scale RS data. Over the last decade, a large number of studies have aimed 
at retrieving forest AGB from LiDAR-derived metrics, usually with good accuracy at the 
1-ha scale (i.e. with a model prediction error typically below 15%; Zolkos et  al. 2013). 
ALS allows for the computation of a variety of metrics related to the vertical or horizon-
tal forest profile (Lefsky et al. 2002). Many studies have relied on statistical fittings (e.g., 
stepwise linear models) to identify the most predictive metrics in a given context, resulting 
in site-specific ALS–AGB model forms with limited transferability across sites (Vincent 
et al. 2012b; Zolkos et al. 2013). For this reason, some studies aimed at designing generic 
ALS–AGB models that were expected to perform consistently across sites. For instance, 
Bouvier et  al. (2015) identified predefined metrics of strong complementarity and inter-
pretability to build a generic model transferable across temperate forest types. In the trop-
ics, another attempt used a single ALS metric, the mean top-of-canopy height (TCH), com-
bined with minimal field data to predict forest AGB. Asner and Mascaro (2014) used data 
from 14 tropical areas to calibrate a model of the form AGB = aTCHb1BAb2  WDb3, where 
the basal area (BA) was locally predicted from TCH, and where WD relied on regional 
estimates. However, the fitted equation, which was presented as universal, led to underesti-
mations of 7% (Jucker et al. 2017a) and 16% (Réjou-Méchain et al. 2015) in two independ-
ent sites compared with locally adjusted models. A modification of the model form was 
suggested by Vincent et al. (2014), where the scaling of AGB estimates from tree to plot 
used the stem number (N) and average stem cross-sectional area (or quadratic diameter) 
instead of BA to avoid unwarranted errors in the scaling process. A universal predictive 
equation that relates ALS metrics and AGB should continue to be sought to maximize the 
benefits from the increasing availability of ALS data (Labriere et al. 2018). However, as 
long as H–D variability is not accounted for, a single predictive equation would remain 
elusive. Furthermore, airborne data acquisition remains costly (ca. 200–500€  km−2) and 
is subjected to flight authorization, which hampers ALS acquisitions in certain countries.
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4.2  Unmanned Aerial Vehicle (UAV) Systems

UAVs may reduce the cost of airborne acquisitions and are thus increasingly utilized. UAV 
systems can generate 3D point clouds through the acquisition of very high-resolution pas-
sive imagery. The overlap between UAV acquisitions enables stereoscopic image process-
ing with potentially very high spatial resolution and low cost compared to LiDAR systems 
(Puliti et  al. 2015). Under the generic appellation of structure-from-motion approaches, 
the automation of traditional photogrammetry by the detection of invariant features in 2D 
images allows for the derivation of dense point clouds (Fig.  6). However, such systems 
mostly capture variation in the top of the canopy and have a rather low ability to pen-
etrate dense forests, limiting the computation of forest height metrics (Roşca et al. 2018). 
UAV-borne LiDAR systems are rapidly developing but are still relatively new (Brede 
et  al. 2017). With an optimized sampling strategy, these systems are able to generate a 
large number of points (thousands of pts m−2), opening the door for individual tree vol-
ume reconstruction using toolboxes developed for TLS (Morsdorf et  al. 2017), even if 
UAV-specific methods would be preferable due to an inverted vertical distribution of point 
density. However, flight authorization remains an issue in some countries, and even where 
authorized, maximum legal UAV piloting distances limit the acquisitions to rather small 
areas (e.g., ca. 300 ha in France).

4.3  VHSR Spaceborne Systems

Spaceborne data may be mobilized to complement ALS or UAV data and move beyond 
the relatively small extents of ALS and UAV campaigns, notably because these data can be 
acquired at a low cost and with few issues regarding authorizations. For instance, VHSR sat-
ellite optical images (≤ 2 m resolution) are able to characterize canopy texture, which informs 
the size distribution of canopy crowns and inter-crown gaps (Couteron et  al. 2005; Frazer 
et al. 2005), thus indirectly informing stand structure and AGB. Texture has historically been 
widely used in forest science for visual interpretation of aerial photographs. Similar interpre-
tations from automated processing can be carried out from VHSR images via canopy tex-
ture analysis whenever images have sufficient effective resolution (the maximum acceptable 
seems to be approximately 2 m; Proisy et al. 2007). For instance, the Fourier-based textural 
ordination (FOTO) method aims to ordinate canopy image windows along texture gradients 
based on Fourier spectra (Couteron et al. 2005), and this method successfully retrieved the 
AGB gradients in several case studies across the tropics with an accuracy only slightly lower 
than that of ALS approaches (relative prediction error ≤ 20%; Proisy et al. 2007; Ploton et al. 
2012; Bastin et al. 2014; Singh et al. 2014; Pargal et al. 2017) but at 50–100 times lower 
cost (2–10€ km−2 for optical images). Hence, the trade-off between data interpretability ver-
sus affordability should suggest designing scaling-up strategies based on nested sampling of 
field, airborne and VHSR satellite data. Satellite-borne optical sensors offering VHSR may 
thus be part of an effective chain for mapping AGB at landscape-regional scales. However, 
there are also situations in which texture analyses fail to properly retrieve certain AGB gra-
dients (Ploton et al. 2013; Blanchard et al. 2015) because the way in which texture features 
relate to AGB strongly varies across forest types (Ploton et al. 2017). Due to the limited num-
ber of field plots available for calibration and validation, biophysical drivers of canopy texture 
have not been fully identified in previous studies. The increasing availability of ALS data will 
help to better evaluate such texture-based approaches and ultimately allow for the calibration 
and validation of texture indices in sufficiently diverse forest types. However, canopy texture, 
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such as reflectance, is strongly impacted by the Sun–scene–sensor geometry, although cor-
rection techniques have been proposed (Barbier et al. 2011; Barbier and Couteron 2015). The 
number of textural descriptors, therefore, needs to be kept to a minimum to control these 
effects in large collections of images acquired in diverse geometrical configurations.

Apart from texture indices, stereophotogrammetric approaches from VHSR satellite 
images allow for the retrieval of canopy surface models that may then be used to predict 

Fig. 6  Illustration of the structure-from-motion approach allowing for the derivation of an orthomosaic 
(lower left) and a surface model (lower right) by automated stereophotogrammetry from drone imagery 
(upper panel) in a forest-savanna mosaic from central Cameroon



895Surveys in Geophysics (2019) 40:881–911 

1 3

AGB. This retrieval implies more cloud-free images and a higher budget for data acquisi-
tion and, contrary to LiDAR, stereophotogrammetric approaches do not provide informa-
tion on fine-scale topographical variation, which is detrimental for building canopy height 
models. Thus, such approaches remain very scarce in the literature (St-Onge et al. 2008; 
Lagomasino et al. 2015). Finally, non-penetrating X-band RADAR satellite images used in 
stereo mode (Tandem-X) have also shown to have the potential to predict AGB gradients 
linked to logging and forest degradation and to assess AGB losses through diachronic com-
parisons (Schlund et al. 2015; Solberg et al. 2018).

4.4  Limits and Perspectives on Bridging Field and Satellites

Regardless of the VHSR product or model structure used for bridging field plots and large-
scale RS data, there are several caveats. First, both the number of calibration field plots and 
their size remain important for restricting VHSR-based AGB prediction errors to accepta-
ble limits. For instance, in a meta-analysis of LiDAR-based AGB estimations, Zolkos et al. 
(2013) showed an asymptotic decrease in the prediction error with the increase in the size 
of the calibration plots, with a slow decay on average above a plot size of 0.2 ha, corre-
sponding to a prediction error of ca. 20%. However, highly contrasted results can be found 
across case studies, suggesting that prediction errors vary with forest structure at a given 
plot size. For instance, in tropical forests of Ghana, Chen et  al. (2015) found a LiDAR-
based prediction error on AGB of ca. 42% at a spatial resolution of 0.16 ha. Thus, AGB 
estimates derived from VHSR data and used for calibrating broad-scale products should be 
performed at a rather coarse resolution, with 1 ha being a conservative resolution to ensure 
an acceptable accuracy.

Another major problem that may arise during the plot to VHSR step is that significant 
biases may occur during the extrapolation of plot AGB estimates through the VHSR prod-
ucts. For instance, the prediction of AGB from local stand height or related RS metrics 
relies on knowledge of local WD and height–diameter allometry. As discussed in Sect. 2, 
both measures are known to vary, sometimes abruptly, within landscapes, and there is thus 
no guarantee against biases when extrapolating AGB estimates over areas where these vari-
ations are unknown. Stratifying the landscape by forest types prior to AGB model cali-
bration thus appears essential to guarantee model robustness, although there are not many 
accounts of thorough pre-stratification processes in the literature (Gregoire et  al. 2016). 
However, sources of complementary data are developing. Notably, hyperspectral sensors 
now appear to able be to provide information on canopy species composition and help infer 
WD (Jucker et  al. 2018b). Moreover, some LiDAR metrics (e.g., canopy gap fractions) 
can help assess the disturbance or successional status of the forest with relevance for the 
explicit estimation of WD (Guitet et al. 2018).

5  Global Wall‑to‑Wall Extrapolation

Earth system models and international policy initiatives both require wall-to-wall data 
(Sitch et al. 2008; Romijn et al. 2018; Herold et al. 2019). Thus, there is a strong need for 
going beyond local to regional AGB estimates to produce unified AGB density maps at the 
biome or global scale. Pantropical, temperate, boreal and global AGB maps have been pro-
posed in the last decade, most often by extrapolating field-based and/or LiDAR-based AGB 



896 Surveys in Geophysics (2019) 40:881–911

1 3

estimations through the use of global optical, RADAR and environmental datasets. In this 
section, we discuss the issues associated with large-scale AGB mapping and the promise of 
new methods and upcoming spaceborne missions.

5.1  The Problem of Interpolation

None of the RS systems available to date that display fair to good correlation with AGB 
(with no signal saturation) offers wall-to-wall coverage at very broad scales (i.e. regions, 
countries, continents). At best, these systems provide a fairly systematic sampling of the 
earth surface under the form of belt transects (e.g., ICESat/GLAS or the upcoming GEDI 
and MOLI missions). This condition implies that an interpolation step is necessary to 
produce a continuous AGB map from this discrete sampling. To that end, all published 
approaches have used or combined statistical interpolation (e.g., kriging or co-kriging with 
environmental drivers) and predictions from high- to medium-resolution spaceborne RS 
data to produce wall-to-wall coverage (e.g., Landsat, MODIS, QuickScat, ALOS PAL-
SAR). For instance, Saatchi et  al. (2011b) and Baccini et  al. (2012) mapped AGB over 
the tropics by spatially interpolating discrete AGB estimates using Quick Scatterometer 
and/or MODIS data. Avitabile et al. (2016) then combined these two maps and used addi-
tional reference data (field plots and locally calibrated maps) in an attempt to generate an 
improved AGB map. Finally, the map from Santoro et  al. (2018) was derived at 100-m 
resolution using a combination of maps based on ALOS PALSAR, ASAR data, Landsat 
data and ICESat GLAS transects, without any calibration from in situ data.

The use of these RS data for estimating AGB at a large scale raises two problems, which 
remain largely unsolved. First, most current satellite-based data relate to signals for which 
relationships to AGB are saturating and/or highly context-dependent (Steininger 2000), 
due to either varying relationships between AGB and RS signals or signal artefacts. Optical 
images are affected by geometrical and atmospheric effects that may produce significant 
spatial and/or seasonal artefacts in surface reflectance (Morton et al. 2014). For instance, 
the high degree of cloudiness in western Gabon and Cameroon is known to strongly 
impact MODIS reflectance data and is likely the reason why Baccini et al. (2012) under-
estimated the AGB values in this region (Fig. 7). Similarly, RADAR data are affected by 
factors related to forest structure and the environment (e.g., soil and vegetation moisture, 
topography) and the uncertainties associated with RADAR data acquisition (Villard and 
Le Toan 2015). Second, in natural tropical forests, stand structure variables often strongly 
vary over short distances. Variograms computed on field plot networks reported spatial 
correlation in AGB or BA that barely reached 5 km (Guitet et al. 2015; Hajj et al. 2017). 
This result means that locations that are more than 4–5 km apart are virtually independent; 
thus, any reliable AGB estimate conveys no useful information for interpolation beyond 
this distance.

Thus, it is not surprising that strong inconsistencies have been reported among broad-
scale AGB maps (Mitchard et al. 2013; Huang et al. 2015; Rodriguez-Veiga et al. 2017). 
For example, Mitchard et al. (2013) compared two widely used pantropical maps (Saatchi 
et al. 2011b, Baccini et al. 2012) and found fairly consistent estimates at the continental 
scale but large regional differences (> 100%) within continents. In Amazonia, a compari-
son with field estimates suggested that both pantropical maps failed to capture the AGB 
gradient across regions with some regions over- or underestimated by > 25% (Mitchard 
et al. 2014). However, without a systematic field sampling of AGB at a large scale, as done 
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in national forest inventories (Kleinn 2017), it is difficult to validate whether a map cap-
tures the regional AGB gradients.

In Fig. 7, we report the result of a comparison of five existing pantropical/global AGB 
maps with six LiDAR-based AGB maps from Africa and French Guiana (Labriere et al. 
2018). The results confirm that in dense forests (> 100 Mg ha−1), broad-scale maps dis-
play relatively weak (R2 ≤ 0.3) if any correlation at the pixel level with independent AGB 
data of improved quality. However, some maps exhibit much higher correlations than oth-
ers considering the very coarse-resolution gradients (here the mean AGB per LiDAR site), 

Fig. 7  Validation of global and pantropical maps using independent AGB estimates from six airborne 
LiDAR (ALS) campaigns in French Guiana and Gabon in forests > 100 Mg ha−1. The results are reported 
at both the pixel (black) and mean AGB site (blue) level (1: Lope; 2: Mabounie; 3: Mondah; 4: Nouragues; 
5: Paracou; 6: Rabi). ALS–AGB density maps at 50 m resolution were first resampled to the resolution of 
the pantropical and global maps using the Geospatial Data Abstraction Library (GDAL) gdalwarp routine 
in average mode. ALS- and global AGB density maps were then superimposed using bicubic interpola-
tion (Inglada and Vadon 2005) through the otbcli_Superimpose routine of the Orfeo ToolBox (https ://www.
orfeo -toolb ox.org/). Spatial correlations using fast Fourier transforms in moving windows confirmed that 
the spatial match between both AGB estimates was high (uncertainty was below the pixel resolution)

https://www.orfeo-toolbox.org/
https://www.orfeo-toolbox.org/
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with the R2 value for the map of Saatchi et al. (2011b) exceeding 0.8. Although this result 
is based on six observations and should be confirmed with more sites, it could suggest that 
broad-scale AGB variations may be successfully captured with such maps. These compari-
sons shed some light on the uncertainty associated with these AGB map estimates, but they 
also convey their own errors for validation or accuracy assessments for at least two reasons. 
First, the maps are all produced for different time periods, e.g., the Saatchi et al. (2011b) 
map is for ca. 2000, the Baccini et al. (2012) map is for ca. 2008 and Avitabile et al. (2016) 
combined these two maps using ground- and LiDAR-estimated AGB at different spatial 
scales and time periods. Second, the definition of forest and AGB may be different for 
each map. In Saatchi et al. (2011b), the biomass estimate at 1 km referred to the biomass 
of remaining forest in each 1 km grid cell, whereas in all other maps, the estimates referred 
to the mean biomass at the grid cell of the map (average of forest and non-forest biomass).

5.2  The Use of Environmental Proxies

One possible way to mitigate the aforementioned difficulties that hinder interpolation is to 
rely on spatialized environmental proxies to enhance the mapping. In the central Amazon, 
Saatchi et al. (2007) used a multivariate decision tree approach featuring both environmen-
tal variables (e.g., elevation, climate) and saturating RS metrics (e.g., Qscat_SV, NDVI) 
and found that AGB classes referring to values above 250 Mg ha−1 were mainly located 
in areas below 190  m elevation and of limited ruggedness (both assessed from SRTM). 
AGB is indeed known to covary with topography globally (Réjou-Méchain et al. 2014), but 
the strength and direction of the relationship strongly vary across sites (de Castilho et al. 
2006; McEwan et al. 2011; Detto et al. 2013; Réjou-Méchain et al. 2015). Some studies 
successfully relied on spatialized climatic variables (Simard et al. 2011; Fayad et al. 2016) 
or geomorphological units (Guitet et al. 2015) to predict AGB or forest height in particular 
regional contexts. Thus, the ongoing development and improvement of global databases 
of environmental variables open avenues for geographically enlarging such approaches 
bearing in mind that relationships between AGB and the environment are intrinsically 
context-dependent. Indeed, AGB is largely driven by complex edaphic processes, such 
as soil structure (Gourlet-Fleury et al. 2011; Jucker et al. 2018b) or water table and bed-
rock depth (Emilio et al. 2013), which often vary at a relatively fine scale and for which 
continuous information is lacking. Furthermore, past and present anthropogenic activities, 
which are not randomly distributed according to abiotic conditions, may largely blur such 
environmental determinism at large scales. Therefore, calibration and prediction should be 
designed according to a relevant pre-stratification of the territory, accounting for anthropo-
genic activities, with sufficient reference data in each stratum.

5.3  Perspectives on Extrapolation

Upcoming RADAR satellite missions, such as NISAR in 2021 (Rosen et  al. 2017) and 
BIOMASS in 2022 (Le Toan et  al. 2011), should be pivotal in global-scale AGB map-
ping by providing wall-to-wall active measurements. While NISAR will be relevant for 
low AGB areas due to the use of an L-band saturating signal, BIOMASS will operate with 
a 50-m resolution P-band signal that is sensitive to large AGB values. (AGB products 
will, however, be delivered at 200-m resolution.) Preliminary analyses from P-band air-
borne missions revealed that polarimetric intensities (PolSAR) and polarimetric RADAR 
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interferometry (PolInSAR) correlated well with AGB values up to 300 Mg ha−1 in temper-
ate and tropical areas (ESA 2012). Above 300 Mg ha−1, such approaches failed to detect 
AGB variations, but tomographic approaches may significantly improve the retrieval of 
AGB up to 500 Mg ha−1 with no obvious saturation and a prediction error of only ca. 10% 
at a 1.5-ha resolution (Minh et al. 2014). A cross-validation performed between two sites 
of tropical forests in French Guiana suggested that tomographic models are transferable 
with an error within 20% at 1-ha resolution (Minh et al. 2016). However, these approaches 
rely on multiple acquisitions with different geometries over the same site, constituting a 
challenge for a spaceborne sensor and limiting the areas that may be covered in such a way. 
As a consequence, tomography will be implemented in only the first year of the mission; 
the three subsequent years will instead correspond to an interferometry phase. Beyond 
AGB mapping, the upcoming missions, including GEDI and MOLI, also constitute a 
unique opportunity to better understand the relationship between forest AGB, productivity 
and spatialized environmental proxies in tropical dense forests.

Finally, if future missions will considerably improve our ability to monitor AGB 
in space and time, the full potential of current RS products has not yet been completely 
assessed. For instance, using multi-angle MODIS observations to characterize the anisot-
ropy of forests, de Moura et al. (2016) were able to generate metrics that displayed a good 
correlation (r2 > 0.5) with ALS-derived metrics in high AGB forests in the Brazilian Ama-
zon, with no apparent saturation. This result adequately illustrates that there is also room 
for progress through the development of new methodologies to be used with the current RS 
products.

6  Radiative Transfer Modelling for Understanding Error Sources

A prerequisite to controlling the sources of errors in satellite-based assessments of for-
est AGB is to understand how the electromagnetic signal of interest interacts with forest 
components. Contrary to sea surface temperature, for instance, there is not yet any sensor 
that directly measures woody AGB per se. We thus use the variations in proximal measure-
ments or indices to infer the AGB variations; however, these measures may be prone to 
interferences and artefacts that sometimes blur the true response of the forest AGB. Thus, 
radiative transfer (RT) modelling has become a standard approach in RS to analyse sen-
sor sensitivity, and inverse modelling is used to measure the extent at which specific for-
est information is recoverable from the recorded signals. Some recent prominent examples 
can be found in studies that investigated the seasonal variation in leaf area in tropical for-
ests (Morton et al. 2014; Wu et al. 2018) or texture retrieval of forest AGB from VHSR 
optical images (Ploton et al. 2017). Even crude modelling approaches may prove useful to 
untangle complex interactions in the sensor–atmosphere–scene–light source system (Bar-
bier et al. 2011; Barbier and Couteron 2015), but a key point in such simulation studies is 
the way in which the complex 3D organization of tropical forest components can be rep-
resented. We will focus here on examples involving passive and active optical signals, but 
similar progress can be observed in RADAR studies (Villard 2009), which were histori-
cally pioneering (Ishimaru 1978).
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6.1  An Increase in Model Realism

In the early days, geometric-optic models were used to understand the variation in direc-
tional reflectance within large pixels comprising a number of objects (e.g., trees) (Egbert 
1977; Li and Strahler 1992; Roujean et  al. 1992; Ni et  al. 1999). Scene reflectance was 
computed as the sum of nominal reflectance of the components (e.g., shaded and lit sur-
faces) of a projection of simple, generally opaque, geometrical shapes within a scene. 
These efforts allowed for the derivation of analytical functions (kernels) that proved useful 
to fit actual directional reflectance variations with a small number of parameters (e.g., Lya-
pustin et al. 2011).

As computing power increased, it became possible to increase scene complexity, as well 
as to improve the level of detail in the descriptions of light–matter interactions. Discrete 
ray-tracing models based on Monte Carlo simulations of photon behaviour and (multiple) 
scattering within the scene have now become standard. This phenomenon is, for instance, 
evidenced by the periodic RAMI (RAdiation transfer Model Intercomparison) experiment, 
which aims at benchmarking and testing a number of existing models (Widlowski et  al. 
2013). Initially, scenes represented homogeneous parallel layers (Verhoef 1985; Myneni 
et al. 1989) of a turbid medium, in which the macroscopic transfer equation was statisti-
cally deduced from the microscopic distribution of elements, such as leaves or aerosols, 
within the cell. These elements were characterized by a density and angle distribution, as 
well as optical properties, which imply a probability of intercepting light rays depending 
on the incoming and outgoing directions. In addition to turbid elements, solid surfaces 
can be added in the form of triangle meshes to represent scene elements other than leaves 
(woody parts, roads, ground, building or water bodies). Triangles can be translucid and 
display Lambertian, specular or other optical properties. Progressively, spatial heterogene-
ity was introduced in the turbid medium distribution (Myneni 1991; Gastellu-Etchegorry 
et al. 1996; North 1996). Indeed, as opposed to most annual crops, crown shading is funda-
mental to understanding scene reflectance in forests. This fundamental need is even more 
pronounced when the spatial resolution of a sensor increases to a point where the pixels 
are smaller than the tree crowns, as biophysical descriptors can then be found in the texture 
features, and describing the spatial arrangement of reflectance values is crucial (Couteron 
et al. 2005; Barbier et al. 2011; Barbier and Couteron 2015). The degree of realism of a 3D 
description has evolved from sets of floating spheres or ellipsoids to more complex enve-
lopes describing tree crown contours (Cescatti 1997; Widlowski et al. 2013). The dimen-
sions and spatial distributions of these envelopes can generally be inferred from standard 
forestry measurements or allometric equations (Barbier et al. 2011).

To further improve the realism of the forest scenes, LiDAR data constitute a giant leap 
forward, as they provide both access to a detailed description of the geometry and topology 
of solid surfaces (trunks and branches) and a statistical sampling of foliage directly com-
patible with the turbid representation via voxelization procedures accounting for spatial 
sampling variations (Grau et al. 2017; Tymen et al. 2017; Vincent et al. 2017). In a temper-
ate montane forest, a voxel-based approach performed better at simulating hyperspectral 
data than an approximation of individual tree envelopes (Schneider et al. 2014). Given the 
importance of LiDAR technology in detailed measurements of vegetation from space, air 
or ground stations, simulating the transfer of this active signal in vegetation is now itself 
an active field of study (Sun and Ranson 2000; Gastellu-Etchegorry et al. 2015). Figure 8 
illustrates the current possibilities and challenges for the realistic simulation of dense tropi-
cal forests. On the one hand, the integration of the structure derived from airborne LiDAR 
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acquisitions allows accurate simulation of canopy grain and gaps with metric resolution. 
On the other hand, the lack of information about the proportion of leaf versus woody ele-
ments (Malenovskỳ et al. 2008) and the difficulty in accurately characterizing the diversity 
of leaf optical properties at the canopy scale contribute to the relatively low radiometric 
agreement. Better accounting for the differences in radiometric properties among species 
or individuals and possibly within individuals would require a better understanding of the 
spatial heterogeneity of spectral properties (Féret and Asner 2014; Rocchini et al. 2018).

6.2  Limits and Perspectives on RT Modelling

The current difficulties that need to be overcome to effectively derive forest mock-ups from 
TLS data are the same as those mentioned above for deriving AGB estimates from TLS. 
For instance, individual tree segmentation is required to allocate species-specific radio-
metric properties to individual trees. In addition, accurate segmentation of leaves from 
wood and proper estimation of leaf angle distribution are required to accurately simulate 
light–vegetation interactions (Antin et al. 2015). These steps become more difficult in the 
upper canopy as the density of the TLS point cloud decreases dramatically due to occlusion 
and increasing distance from the laser source. This difficulty may, however, be minimized 
through the fusion of TLS and UAV data. Finally, a better understanding of leaf demogra-
phy and its integration into advanced modelling of leaf optical properties, combined with 
the improved description of non-photosynthetic tissues in LiDAR-derived 3D mockups, 
will increase the realism of simulations derived from physical modelling.

An alternative to producing a forest scene with a turbid description of leaves is to use an 
architectural model to simulate the tree branching structure and individual leaf distribution 
(De Reffye et al. 1995; Dauzat et al. 2001; Côté et al. 2011; Widlowski et al. 2013; Calders 
et al. 2018). Independently of the biological realism of such detailed scene descriptions, 
these models provide a means to assess the degradation of the transfer modelling outcome 

Fig. 8  Simulation of airborne optical imaging in a tropical forest from French Guiana (Paracou). The sim-
ulation is based on the integration of airborne LiDAR and field spectroscopy in the DART 3D radiative 
transfer model (Gastellu-Etchegorry et al. 2015). The 3D mock-ups were computed from airborne LiDAR 
point clouds using AMAPvox (Vincent et al. 2017), and leaf optical properties corresponding to sampled 
trees (delineated in red) were measured with a field spectroradiometer and assigned to leaf elements from 
all voxels on the vertical column of the mock-up. A generic set of leaf optical properties was applied to all 
trees with undocumented leaf optical properties using the PROSPECT leaf model (Féret et al. 2017). Left: 
original image (red = 640 nm; green = 549 nm; blue = 458 nm); centre: simulation using a turbid representa-
tion for leaf elements; right: simulation using triangle approach for leaf elements
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as the scene is progressively simplified in terms of representation (Jonckheere et al. 2006; 
Widlowski et al. 2013; Antin et al. 2015).

7  Conclusions and Perspectives

By reviewing the advances and limitations in biomass estimation at each level of the pro-
cessing chain, we propose a logical workflow that combines what could be considered as 
best practices given the current state of knowledge (Fig. 9).

Because almost all steps of the processing chain rely on statistical models, the quality of 
calibration/validation data is crucial, yet often neglected. In this review, we first discussed 
common-sense procedures to drastically reduce the error levels at the field plot scale, such 
as improving georeferencing, increasing field plot size (1 ha or more) or developing allo-
metric equations that better account for local ecological variations in plant composition 
and/or architecture. Terrestrial LiDAR scanning appears to be a promising avenue for indi-
vidual-level and plot-level measurements of aboveground volumes. Combined with rep-
resentative WD estimates that account for the intra- and inter-individual patterns of WD 
variations, robust predictions of AGB may be achievable. Furthermore, the combination of 
TLS and airborne LiDAR measurements in the upscaling scheme may significantly reduce 
the source of mismatches described in Sect. 3, allowing for the easy-to-perform control of 
coregistration and ensuring a continuum in the measured objects (Kükenbrink et al. 2017).

The extrapolation of local estimates to global scales should ideally be performed in 
successive steps, relying on intermediate, high-resolution data, such as VHSR spaceborne 

Fig. 9  Best-practice guidelines to upscale AGB estimates from local to global scales. The targeted accuracy 
(Y axis) refers to a 1-ha scale
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optical imagery, airborne or UAV-based LiDAR and (UAV-based) stereophotogrammetry. 
These data can be used to estimate AGB with an accuracy close to the accuracy of ground 
estimates, but they dramatically increase the representativeness of calibration data when 
earth observation data of decreased sensitivity (but also decreased cost) are to be used for 
regional to global predictions. The recent and rapid development of UAV systems, which 
currently fill the gap between terrestrial and airborne laser scanning systems, is particularly 
promising because these systems have the potential to bridge different spatial scales, from 
within-individual-tree to Earth observation pixels of medium resolution (e.g., MODIS).

In parallel, efforts should be expanded to better understand the interactions between 
different types of electromagnetic signals in varying contexts, e.g., RADAR, LiDAR and 
passive optical systems, to fully assess the potential of multisensor data fusion. These 
interactions may be largely blurred by numerous sources of noise and bias—instrumental, 
atmospheric, geometric, etc. Radiative Transfer (RT) modelling and the prospect to attain 
a high degree of realism in 3D stand modelling have made this approach a central tool for 
performing sensitivity analysis and designing signal correction algorithms. Assuming that 
3D simulated stands will soon closely reflect reality, they may even be used to directly cali-
brate inversion models, bypassing many issues such as plot geolocation problems.

The last promise comes from the launch of new space missions (BIOMASS, GEDI, Ice-
sat-2, MOLI, NISAR), which will improve our extrapolation capacities by providing both 
global coverage and signals of increased relevance. However, whether used individually 
or in fusion, the calibration of these products should rely on a pre-stratification of forested 
lands, with enough reference data in each stratum, as it is unlikely that a single universal 
model can be transferable across forest types and regions without biases.

To conclude, even high-quality Earth observation data currently do not meet the require-
ments of international environmental policies (e.g., IPCC GPG, REDD + , SDGs, see Her-
old et al. 2019). Understanding the sources of error and pathways to improve biomass esti-
mation at all levels (as explained in this paper) is fundamental to implementing the best 
possible practices at each step, resulting in high-quality, consistent biomass estimates with 
uncertainties quantified to serve the various applications and users.
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