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Summary

1

 

An important goal of community ecology is the assessment of factors that are likely
to influence the spatio-temporal distribution of  species assemblages and diversity.
Surprisingly, most statistical methods devoted to this have remained poorly intercon-
nected, as well as poorly connected with the popular metrics of diversity estimation. In
the present paper we show that important questions related to determinants of species
diversity can be specified through a simple multivariate linear model and explored, in
common diversity metrics, using standard methods and routines of variance/covariance
decomposition.
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Thanks to an unusual form of presentation of taxonomic data into a 

 

table of species
occurrences

 

, which considers the individuals as data units, Shannon and Simpson indices
as well as species richness can all be expressed as a (weighted) sum of squares. Subsequent
apportionments into explained and residual sum of squares provide direct estimates of
the beta- and alpha-diversity components with respect to either categorical habitat
types or continuous gradient variables. Appropriate statistics and non-parametric tests
are available to assess the significance of these components.
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Explicit analytical relationships exist between the linear approximation of the table of
species occurrences by sampling sites, and the more classical table of species abundances
by sites. Therefore, direct links with methods of ordination in reduced space, such as
correspondence analysis and canonical correspondence analysis, provide opportunities
for partitions that preserve consistency with usual diversity indices. The sum of squares
of the approximated occurrence table provides measures of intersites beta-diversity,
from which measures of  dissimilarity with explicit references to diversity indices can
be derived. Such measures are amenable to distance-based apportionments through
multivariate variograms and multiscale ordination.
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What are the relative effects of  the biological, environmental and anthropogenic
factors and of their potential interactions on species diversity? Are these effects stable
across scales, from landscape to region, between regions and across ecosystems? The
methodological integration proposed in our analytical framework enables one to
address these questions using standard statistical tools, and opens new prospects for
quantitative biodiversity studies. This also paves the way towards refined models for
predicting species diversity at unsampled locations.
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Introduction

 

Since the review paper by Lande (1996), there has been
a renewed interest in the additive partition of species
diversity as a meeting point between theoretical and
empirical approaches of  community ecology (see
References in Veech 

 

et al

 

. 2002). Indeed, Lande’s
contribution paved the way to bridging the gap between
the concepts of  alpha-, beta- and gamma-diversities
(Whittaker 1960, 1972) and modern statistical tools. In
addition, Lande’s paper has stimulated further analytical
developments, notably towards scale-dependent appor-
tionments of species diversity and hypotheses testing
(e.g. Wagner 

 

et al

 

. 2000; Crist 

 

et al

 

. 2003; Kiflawi &
Spencer 2004).

However, what has been almost completely ignored
is that Lande’s approach can also refer to a corpus of
standard linear modelling methods largely disseminated
amongst ecologists, but generally not used with explicit
reference to diversity analysis. We have previously
demonstrated (Pélissier 

 

et al

 

. 2003; Couteron & Pélissier
2004; Couteron & Ollier 2005) that various additive
apportionments of species diversity can be achieved
within this very general framework, which covers, among
others, multivariate analysis of variance, 

 

sensu

 

 Anderson
(2001), multivariate multiple regression (including multi-
variate canonical analysis, 

 

sensu

 

 Legendre & Legendre
1998) and multivariate variography (Wackernagel 1998).

As we have previously focused on particular technical
facets, in this paper we illustrate how different aspects
of additive diversity partitioning can be assembled into
a simple and operational multivariate linear framework
that opens opportunities for the joint analysis of and
discrimination among different types of processes
affecting diversity patterns.

 

An operational data table

 

Let us consider a taxonomic relevé in the form of a list
of 

 

n

 

 observations corresponding to a set of individual
organisms recorded during a given field survey, and
which contains 

 

s

 

 different species names. The list can be
binary-coded as a data matrix with 

 

n

 

 rows and 

 

s

 

 col-
umns filled with zeros, except for the unique cell of each
row that associates a particular observation with a spe-
cies name and contains the value 1 (Fig. 1a). Following
Gimaret-Carpentier 

 

et al

 

. (1998), we will call such a
matrix a table of species occurrences (an occurrence
table, in short). It is noteworthy that any table of species
abundances, which originates for instance from the
enumeration of 

 

s

 

 species in a set of 

 

p

 

 sampling sites and
sums across all cells to a total of 

 

n

 

 observations, can
easily be re-coded as a 

 

n

 

 by 

 

s

 

 table of species occur-
rences partitioned according to sites (Fig. 1b), a kind
of 

 

inflated data table

 

, 

 

sensu

 

 Legendre & Legendre
(1998, p. 463).

Let us define a hypothetical table of species occur-
rences, irrespective of sites for the moment, as an 

 

n

 

 

 

×

 

 

 

s

 

matrix 

 

Y

 

 whose element 

 

y

 

ij

 

 is 1 when the 

 

i

 

th observation

belongs to species 

 

j

 

, 0 otherwise. Total sum of squares
of this table is 

 

TSS

 

 

 

=

 

 

 

∑

 

ij

 

(

 

y

 

ij

 

 – 

 

y

 

·j

 

)

 

2

 

, with 

 

y

 

·j

 

 

 

=

 

 

 

∑

 

i

 

 

 

y

 

i j

 

/

 

n

 

, the
relative frequency of species 

 

j

 

. The corresponding
(biased) variance, i.e. 

 

TSS

 

/

 

n

 

, is exactly Simspon index
of species diversity (Lande 1996). Introducing a function
that modulates weights of species in the above summation,
provides diversity quantifications in several popular
metrics:

 

TSS

 

 

 

=

 

 

 

∑

 

j

 

 w

 

j

 

 ∑

 

i

 

(

 

y

 

ij

 

 

 

−

 

 

 

y·

 

j

 

)

 

2

 

eqn 1

Taking 

 

w

 

j

 

 

 

=

 

 1 for all species, 

 

w

 

j

 

 

 

=

 

 log(1/

 

y

 

·j

 

)/(1 – 

 

y

 

·j

 

) or

 

w

 

j

 

 

 

=

 

 1/

 

y

 

·j

 

 means equating 

 

TSS

 

/

 

n

 

 with Simpson diver-
sity, Shannon diversity or species richness (minus one),
respectively (Pélissier 

 

et al

 

. 2003). However, there is in
fact no reason to restrict the definition of 

 

w

 

j

 

 to functions
equating 

 

TSS

 

/

 

n

 

 with classical measures of species
diversity, and one could prefer using weights account-
ing for the patrimonial, conservation or economic
value of species (Yoccoz 

 

et al

 

. 2001).

 

An operational multivariate linear model

 

One of the main goals of community ecology is the
identification of environmental factors that are likely
to determine the spatial and temporal distribution of
species diversity (Gaston & Blackburn 2000). In other
words, we would like to be able to quantify the relationship
between observed species diversity and one (or a set of)
external explanatory variable(s) depicting accessible
information about the species’ environment. Returning
to our above definition of a table of species occurrences,

 

Y

 

, the problem can parsimoniously be specified through
the following general multivariate linear model:

Fig. 1 (a) From a list of n = 7 individual observations of s = 3
species to a n × s table of species occurrences, Y. (b) From a
table of species abundances of s = 3 species in p = 3 sites that
sums to n = 7 observations, to a n × s table of species
occurrences partitioned according to p sites.
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Y

 

 ====

 

 

 

XB

 

 ++++

 

 

 

E

 

eqn 2a

where 

 

X

 

 is a 

 

n

 

 

 

×

 

 

 

m

 

 matrix of explanatory variables, 

 

B

 

 a

 

m

 

 

 

×

 

 

 

s

 

 matrix of unknown parameters, and 

 

E

 

 a 

 

n

 

 

 

×

 

 

 

s

 

matrix of error terms. It could be convenient to specify
a model with no intercept by centring the columns of 

 

Y

 

so that their means are all 0 (see Pélissier 

 

et al

 

. 2003).
How well the model fits to the data means examining

how the total variation in table 

 

Y 

 

(quantified by TSS)
partitions into a component explained by predictions
of the model or model sum of squares (MSS) and a
component unexplained by predictions of the model or
residual sum of squares (RSS). Providing that all the
three terms are appropriately weighted via the same wj

function (see previous section), we have TSS = MSS +
RSS, with:

MSS = ∑j wj ∑i(yij − y·j)
2 eqn 2b

RSS = ∑j wj ∑i (yij − yij)
2 eqn 2c

These very general equations hold for any X matrix,
which may contain either quantitative and/or dummy
coded qualitative covariates (Sokal & Rohlf  1995;
Legendre & Legendre 1998).

Whatever the diversity metric chosen via wj, the
proportion of total species diversity explained by the
variables contained in X can be quantified by the ratio:
R2 = MSS/TSS = 1 − RSS/TSS.

A well-known weakness of this ratio is the fact that
the denominator is fixed for a given set of observations,
while each additional variable in X can only increase
the numerator and thus the R2 value, even though the
new variable is completely random. Moreover, as the
model intrinsically aims to predict species identity for a
potentially very large number of individual occurrences,
RSS is inevitably large and the R2 value is likely to be
very low, which may be intuitively misleading about the
actual pertinence of the explanatory variables. For
example, in Pélissier et al. (2003), we found that a soil
gradient coded in nine classes, though highly significant
(randomization test: P < 0.001; see below), explained
less than 5% of the Simpson diversity of a table of species
occurrences of 381 individuals and 113 species.

An appropriate statistic to test the null hypothesis of
no effect of the explanatory variables is thus the -like
pseudo-F ratio (Legendre & Anderson 1999), which
includes the degrees of freedom in the numerator and
denominator of the R2 ratio. We call it ‘pseudo’ because
the theoretical distribution function of this statistic is
unknown and probably not a Fisher-Snedecor distri-
bution, as Y does not conform to a multinormal distri-
bution function. Non-parametric tests of statistical
significance such as those based on randomization
procedures (Anderson 2001; McArdle & Anderson 2001)
are therefore required. Indeed, an empirical distribution
of the pseudo-F ratio can be simply obtained by per-
mutations between the rows of Y, which have uniform
weights of 1/n, while species weights are kept unchanged.

Relationships with alpha-, beta- and 
gamma-diversity

Our definition of total species diversity, TSS in eqn 1,
obviously conforms to Whittaker’s (1972) concept of
gamma-diversity as a measure of species diversity in a
pooled set of samples, i.e. from ‘… samples combined
from several communities, or lists of species for geo-
graphical units, or nonareal samples [ … ] drawing
species from a number of communities’. Whittaker also
postulated that: ‘… the extent of  change in species
composition of communities [ … ] along environmental
gradients is beta diversity or between-habitat diversity’.
However, since then, beta-diversity is usually viewed as
a measure of the variation in species composition
between discrete samples (Magurran 2004), such as,
study sites or habitat types (e.g. soil classes). Our
multivariate linear model provides in this case a direct
generalization of Lande’s (1996) partition within the
framework of (multi)factorial multivariate analysis of
variance (see first subsection below). However, while the
environmental distance between groups of observations
is arbitrary and constant in a factorial experimental
design, our model also provides a means for the direct
quantification of gradient-induced beta-diversity when
the sampling points are placed with respect to a con-
tinuous environmental variable (second subsection).

  

Returning to eqn 2a with a hypothetical example similar
to the one of Fig. 1(b): Y is a n × s table of species occur-
rences and X a n × ( p – 1) matrix of dummy variables
coding for an explanatory categorical descriptor with p
habitat types, environmental classes or sampling sites (see
Legendre & Legendre 1998, p. 46). Couteron & Pélissier
(2004) showed that such a model enters within the frame-
work of multivariate analysis of variance, sensu Anderson
(2001), i.e. a generalization of the univariate  obtained
by adding up the sum of squares across all dependent
variables. Indeed, we can re-formulate the table of species
occurrences in order to take explicitly into account the
partition of the n observations into p sites as Y, whose
elements are noted yijk, with 1 ≤ i ≤ n, 1 ≤ j ≤ s and
1 ≤ k ≤ p. The total number of observations is n = ∑k nk,
where nk is the number of observations in site k.

In doing so, the approximated values of Y by X,
noted  yijk, are the mean relative frequencies of the spe-
cies within each site, namely y·jk = ∑i∈k yijk/nk, so that the
approximated occurrence table Y, whose rows are all
the same in a given class k (Fig. 2), is unbiased:

y·j· = ¥ijk = ∑i yijk/n = ∑k nky·jk/n

Therefore, expressing MSS and RSS as the among-
and within-sites sum of squares gives:

MSS = ∑j wj  ∑i(yijk − y·j·)
2 = ∑j wj  ∑k nk(y·jk − y·j·)

2

eqn 3a
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RSS = ∑j wj ∑i (yijk − yijk)2 
= ∑j wj ∑k ∑i∈k(yijk − y·jk)

2 eqn 3b

Dividing the above equations by n renders them equi-
valent to those defining beta- and alpha-diversity,
respectively, in the additive partition of  Lande (1996)
or Couteron & Pélissier (2004).

Contrary to the assertion of Crist et al. (2003), it is
here demonstrated that any statistical package dealing
with  can provide additive apportionment of
species diversity within beta and alpha components,
namely MSS/n and RSS/n. In fact, the results shown in
Table 1 were obtained through function aov ( ) (Appen-
dix S1 in Supplementary Material) of the R statistical
package (R Development Core Team 2004). Options
for two-way , which are available with the same
functions, can address more sophisticated schemes
of diversity partitioning as presented by Couteron &
Pélissier (2004). The approach of permutation tests
based on the pseudo-F ratio remains useful in this
context. The guidelines provided by Anderson & Ter
Braak (2003) provide a sound basis although technical

investigations on power and accuracy of these tests are
still needed in the case of multiway and/or nested
. The influence of species weighting on power
and accuracy of these tests is an open question, which
should also be addressed.

  

Let us now consider a n × s table of species occurrences
and a continuous variable X corresponding to a quan-
titative measure of an ecological characteristic (e.g. soil
pH) recorded for each site or relevé. The amount of
variation in Y accounted for by the variation of X is thus
quantified, in any diversity metric defined via wj, by:

MSS = ∑j wj · (∑i(xi − ≈) · (yij − y·j))
2�∑i(xi − ≈)2 eqn 4

It follows that MSS/n represents the part of total spe-
cies diversity explained by the gradient, i.e. an objective
measure of the gradient-induced beta-diversity.

Imagine, for instance, that soil pH was 4.6, 5.3 and
5.8 for the three sites of our hypothetical example,
respectively. Any statistical package dealing with linear
models can provide the results given in Table 2 and
obtained using the aov ( ) wrapper function to lm ( )
(Appendix S1) of the R statistical package (R Devel-
opment Core Team 2004).

By extension, multivariate analysis of covariance
provides a means to adjust for the effects of a continuous
covariate in an  design (Sokal & Rohlf 1995).

Relationships with distance/dissimilarity matrices

Since Whittaker, beta-diversity is often quantified by
distance (or dissimilarity) matrices derived from vari-
ous similarity coefficients (reviewed by Legendre &
Legendre 1998, p. 253). Unfortunately, the most fre-
quently used similarity indices (e.g. Jaccard, Sorensen
or Steinhaus) have no direct connection with the usual

Fig. 2 A hypothetical example of diversity partitioning with
respect to discrete habitat types using standard () routines.
(a) Initial table of species occurrences, Y. (b) Approximated
table by a set of dummy variables coding for discrete habitat
types (or sites), Y.

Table 1 Diversity partitioning with respect to discrete habitat types using standard () routines and the hypothetical
example given in Fig. 2(a)

Total diversity (TSS/n) Total  diversity (MSS/n) R2 (MSS/TSS)

Pseudo-F 

Richness – 1 2 0.875 0.4375 1.56
Shannon 1.08 0.482 0.4464 1.61
Simpson 0.653 0.296 0.4533 1.66

MSS p
TSS MSS n p

/(   )
(   )/(   )

−
− −

1

Table 2 Diversity partitioning with respect to a continuous environmental gradient using standard () routines and the
hypothetical example given in Fig. 2(a) with pH values of 4.6, 5.3 and 5.8 assigned to sites I, II and III, respectively

Total diversity (TSS/n) Total diversity (MSS/n) R2 (MSS/TSS)

Pseudo-F 

Richness – 1 2 0.29 0.145 0.847
Shannon 1.08 0.145 0.134 0.778
Simpson 0.653 0.0829 0.127 0.727

MSS p
TSS MSS n p

/(   )
(   )/(   )

−
− −

1
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diversity indices, which means that many ecological
studies measured alpha and beta diversity in distinct
‘units’, a somewhat unsatisfying situation. Moreover,
as recently pointed out by Legendre et al. (2005), some
confusion has risen in the literature concerning the
possible relationship between the measure of beta
diversity and the variance of an abundance data table.
We will first examine this in more detail, drawing upon
connection with multivariate ordination techniques.
We will then show how our model can help clarify the
relationship between dissimilarity and beta diversity,
and thus provide a basis for more consistent spatially
explicit apportionments of species diversity.

   

Let us refer to an arbitrary p × s abundance matrix, A,
with sites as rows (1 ≤ k ≤ p) and species as columns
(1 ≤ j ≤ s). As shown in Fig. 1(b), such a table is closely
related to Y, our table of species occurrences. Similarly,
an ‘ecologically meaningful transformation’ of abundances
into ‘compositional data’ (Legendre & Gallagher 2001)
as ckj = akj/nk, provides a ‘shrunken’ version of Y, the
approximation of Y by a set of dummy variables coding
for sites, without any loss of information, since we have
for each k: yijk = ∑i∈k yijk/nk = akj/nk (see previous section
and Fig. 3a).

However, the classical sum of squares, i.e. the sum of
the squared deviations from the mean, of the trans-
formed C matrix, is not equivalent to MSS computed
from the occurrences. It indeed appears from eqn 3a,
that MSS can be viewed as a weighted sum of the
squared differences between within-sites and overall
relative species frequencies, that may be expressed as:

MSS = ∑j wj ∑k nk(akj/nk − y·j·)
2

eqn 5a
with y·j· = ∑k nky·jk/n = ∑k nkakj/nkn = ∑k akj/n

In the above equation, it is as if the values of the abun-
dance table, A, have been re-scaled thanks to a division
by nk (in matrix C), while the rows (sites) have been pro-
vided a weight of nk, and the columns (species) a weight
of wj. By dividing MSS by n, one can thus recognize an
expression of the total inertia (or total variance, i.e. the
sum of all eigenvalues) of correspondence analysis (CA)
when wj = 1/y·j·, and of a form of redundancy analysis
(RDA) called non-symmetric correspondence analysis

(NSCA) when wj = 1 (Gimaret-Carpentier et al. 1998;
Pélissier et al. 2003). Taking wj = log(1/y·j·)/(1 – y·j ·),
could also lead to a form of column weighted corre-
spondence analysis whose inertia is consistent with
Shannon diversity (see Pélissier et al. 2003). Other
alternatives for re-scaling and row weighting consistent
with well-known and useful ordination methods are
possible, although they are in this case incompatible
with usual diversity indices (Couteron & Ollier 2005).

Various R packages, available from the CRAN
repository (see Appendix S1), offer functions to perform
multivariate ordinations that retrieve the results of
Table 1, such as corresp ( ) of package MASS, cca ( ) of
package vegan, dudi.coa ( ) and dudi.nsc ( ) of package
ade4.

   

In addition, we can express MSS as the mean of the
squared Euclidean distances among the n observations
(Legendre & Anderson 1999). This means that averaging
squared departures around a mean value is equivalent
to averaging squared differences between individual
observations (see Anderson 2001). In so doing, MSS of
eqn 3a can be rewritten as:

eqn 5b

For reverting to abundances, we remember that yijk =
akj/nk for all observations belonging to a given site k, so
that:

eqn 5c

It is apparent from eqn 5c that MSS is a weighted aver-
age of the squared ‘distance between species profiles’
(Legendre & Gallagher 2001) of sites k and k′, i.e. (akj/
nk − ak′j/nk′)

2, and that sites are weighted according to
the number of occurrences they harbour while species
weighting, wj, defines the diversity metric. Further-
more, one can build a measure of dissimilarity between
sites k and k′, , which is
consistent with any of the diversity metrics defined by
wj, as:

eqn 5d

Dissimilarities given in Fig. 3(b) were obtained thanks
to the standard dist ( ) function (Appendix S1) in R
statistical package (R Development Core Team 2004).

Couteron & Pélissier (2004) and Couteron & Ollier
(2005) demonstrated that various subsequent spatially
explicit apportionments of species diversity are derived
from eqn 5c, on the basis of ecological and/or geo-
graphical distance classes among sites.

Fig. 3 (a) The ‘shrunken’ matrix C, containing the within-sites
profiles of relative species frequencies, for the hypothetical
example given in Fig. 2. (b) Squared Euclidean distances
between sites or dissimilarities (provided here wj = 1 for all
species, i.e. using Simpson metric).
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Conclusion and perspectives

What are the relative effects of the biological, environ-
mental and anthropogenic factors, and of their poten-
tial interactions on species diversity? Are these effects
stable across scales, from landscape to region, between
regions and across ecosystems?

We have presented here a simple multivariate linear
model, which enables us to address these questions
by partitioning the most common diversity indices
according to environmental explanatory variables on
the basis of standard, well-mastered methods of variance
and covariance decomposition. Thanks to an unusual
form of presentation of the taxonomic data, the table of
species occurrences, which considers individual organisms
as the elementary statistical unit, this approach extends
and generalizes the principles of additive partitioning
(Lande 1996) and hierarchical analysis (Wagner et al.
2000; Crist et al. 2003) of species diversity. An addi-
tional practical advantage is that standard functions of
(multivariate) analysis of variance, such as the aov ( )
function in R, can directly be used to perform the
computations. However, given that a table of species
occurrences may be very large, and with a high proportion
of zero entries (i.e. a sparse matrix, Duff et al. 1986),
optimized dedicated R routines have been made freely
available at http://pelissier.free.fr/Diversity.html. The
code to perform the worked examples provided in this
paper with both standard R functions and our diversity
routines is given in Appendix S1.

Conforming to a standard analytical framework pro-
vides an interesting perspective on a variety of analyses
of the components of species diversity, which preserves
consistency with the common richness, Shannon and
Simpson diversity indices. We showed for instance, that
ordination in reduced space (a form of variance appor-
tioning) of the fitted and residual tables of our model
had direct links with correspondence analysis and with
some of its one- or two-table variants, such as canonical
correspondence analysis (Pélissier et al. 2003). Moreover,
spatially explicit diversity partitioning can be related to
variography, a form of variance decomposition in relation
to distance (Couteron & Pélissier 2004), which further
extends towards the analysis of spatial patterns displayed
by multivariate ordination results (multiscale ordination,
Wagner 2003; Couteron & Ollier 2005).

Such a methodological integration provides a means
to conduct various complementary analyses in the same
diversity metric, and in particular to measure alpha
and beta diversity components in the same unit. This
facilitates assessing the relative effects of different types
of processes affecting species diversity patterns, as well
as investigating their stability across scales.

However, in terms of methodology, more remains to
be explored. For instance, a well-known drawback of
parametric, as well as simple randomization procedures
to test for statistical significance of the -like F-ratios,
is the underlying assumption of independence between
the observations. Data collected via taxonomic relevés

are likely to violate this assumption because of spatial
autocorrelation of species’ distributions, a fact that could
yield undue significance of effects of certain explanatory
variables (Legendre & Fortin 1989; Legendre 1993).
Permutation strategies accounting for the spatial structure
of multifactorial experimental designs are available
(Anderson & Ter Braak 2003), but they still do not
meet the hypothesis of independence between the indi-
vidual observations at the lowest sampling strata.
Techniques borrowed from geostatistics that incorpo-
rate spatial dependence as an additional term within a
standard linear model, seem promising (Lichstein et al.
2002; Wall 2004), as the term of spatial dependence is
able to represent processes endogenous to vegetation
dynamics (dispersal, demography, etc.), i.e. with no
strict environmental determinism (Keitt et al. 2002).

Up to this point, we have only discussed explanatory
models that seek to account for observed variations in
species diversity. However, one could also want to pre-
dict species’ occurrences and diversity at unsampled
locations, a more demanding objective. In this case, the
variables to be predicted are the Yi columns of the table
of the species occurrences that are binomial variables.
A natural refinement of our model that constrains the
predictions to be probabilities of species occurrences
ranging between 0 and 1, is a multivariate logistic model
(Hosmer & Lemeshow 2000), i.e. a generalized multi-
variate linear model with a logit link function, classically
used to predict presence-absence data (e.g. Dupré &
Ehrlén 2002; Guisan et al. 2002; Kolb & Diekmann
2004; Guisan & Thuiller 2005). Spatial dependence can
also be introduced under the form of geostatistical or
of conditional autoregressive models (CAR) that can
suit the prediction of binary variables (Anselin 2002).

While ongoing biodiversity census and development
of information technologies will ease the constitution
of large and relevant data sets, modelling diversity
determinants and variations will demand appropriate
statistical standards for data analysis and parameters
estimations. We hope our contribution will stimulate
further developments in this way.
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Appendix S1 R code to perform the worked examples.
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Appendix 

R code to perform the worked examples with the standard functions of the base library or 

other libraries (stats, ade4, vegan) available at http://cran.r-project.org/, and dedicated 

diversity routines available at http://pelissier.free.fr/Diversity.html. 

 

spot is the table of species occurrences, hat the vector of discrete habitat types and ph the 

vector of soil pH variable.  

> spot<-cbind(c(1,0,0,1,0,0,0),c(0,1,1,0,1,0,0),c(0,0,0,0,0,1,1)) 

> hat<-as.factor(c(1,2,2,3,3,3,3)) 

> ph<-c(4.6,5.3,5.3,5.8,5.8,5.8,5.8) 

 

n is the total number of observations. 

> n<-sum(spot) 

 

wrich and wshan are vectors of species weights for the richness and Shannon metrics, 

respectively (for Simpson metric the weight is 1 for all species). 

> wrich<-1/apply(spot,2,mean) 

> wshan<-log(1/apply(spot,2,mean))/(1-apply(spot,2,mean)) 

 

1. Partitioning species diversity according to discrete habitat types (Tab. 1): 

1a. the standard aov{base} function performs (M)ANOVA, while the 

summary.div{diversity} function converts sum of squares into diversity measures: 

> library(diversity) 

> summary.div(aov(spot~hat)) 
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1b. the anodiv{diversity} function performs MANOVA from a specific odf object more 

efficient for large data sets. Moreover, summary{diversity} performs randomisation tests of 

statistical significance: 

> ovec<-odf(spot) 

> summary(anodiv(ovec$sp~hat),nrepet=100) 

 

2. Partitioning species diversity according to pH gradient (Tab. 2) with the standard aov{base} 

function and summary.div{diversity} (randomisation tests for continuous covariates are not 

yet implemented in package diversity): 

> summary.div(aov(spot~ph)) 

 

3. Computing MSS from inertia of an abundance data table (Tab. 1): 

3a. corresp{MASS} function performs Correspondence Analysis (CA) providing MSS in the 

richness metric:  

> A<-apply(spot,2,function(x) tapply(x,hat,sum)) 

> library(MASS) 

> sum(corresp(A,nf=2)$cor^2) 

 

3b. dudi.coa{ade4} and dudi.nsc{ade4} perform CA and Non-Symmetric CA providing MSS 

in both richness and Simpson metrics, respectively:  

> library(ade4) 

> sum(dudi.coa(as.data.frame(A),scannf=F)$eig) 

> sum(dudi.nsc(as.data.frame(A),scannf=F)$eig/ncol(A)) 

 

3c. ca.richness{diversity}, nsca.simpson{diversity} and cwca.shannon{diversity} are 

wrapper functions to as.dudi{ade4}, which perform MSS in the richness, Shannon and 

Simpson metrics, respectively: 
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> rich<-ca.richness(A) #Select the number of axes: 

> 2 

> summary(rich) 

 

> shan<-cwca.shannon(A) #Select the number of axes: 

> 2 

> summary(shan) 

 

> simp<-nsca.simpson(A) #Select the number of axes: 

> 2 

> summary(simp) 

 

4. Computing MSS from dissimilarity matrices (Fig. 3): 

4a. dist{base} function computes Euclidean distances: 

> ni<-apply(A,1,sum) 

> w<-c(ni[1]*ni[2],ni[1]*ni[3],ni[2]*ni[3]) 

> B<-apply(A,2,function(x) x/ni) 

> D2<-apply(B,2,dist)^2 

> rich.ssq<-sum(apply(t(apply(D2,1,function(x) x*wrich)),2,function(x) x*w))/n^2 

> shan.ssq<-sum(apply(t(apply(D2,1,function(x) x*wshan)),2,function(x) x*w))/n^2 

> simp.ssq<-sum(D2*w)/n^2 

> cbind(rich.ssq,shan.ssq,simp.ssq) 

 

4b. dissim{diversity} function computes dissimilarities: 

> d<-dissim(A) 

> D2<-d$delta 

> apply(d$dissim,2,function(x) sum(x*d$weight))  

 


