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Abstract. Spatial heterogeneity is a characteristic of most
natural ecosystems which is difficult to handle analytically,
particularly in the absence of knowledge about the exogenous
factors responsible for this heterogeneity. While classical
methods for analysis of spatial point patterns usually require
the hypothesis of homogeneity, we present a practical ap-
proach for partitioning heterogeneous vegetation plots into
homogeneous subplots in simple cases of heterogeneity with-
out drastically reducing the data. It is based on the detection of
endogenous variations of the pattern using local density and
second-order local neighbour density functions that allow
delineation of irregularly shaped subplots that could be con-
sidered as internally homogeneous. Spatial statistics, such as
Ripley's K-function adapted to analyse plots of irregular shape,
can then be computed for each of the homogeneous subplots.
Two applications to forest ecological field data demonstrate
that the method, addressed to ecologists, can avoid misinter-
pretations of the spatial structure of heterogeneous vegetation
stands.

Keywords: Local density function; Point pattern; Ripley’s K-
function; Second-order local neighbour density function.

Abbreviation: CSR = Complete spatial randomness.

Introduction

Heterogeneity is a characteristic of natural ecosys-
tems that can be observed both in space and time (Kolasa
& Pickett 1991). In a spatial context, heterogeneity
occurs when some quantitative or qualitative descriptors
of an ecosystem vary significantly from one location to
another. This variation can result either from exogenous
factors, i.e. external to the biological community under
study (soil, climate, etc.) or endogenous factors, i.e.
inherent to the system’s internal functioning (life-history
variation, competition, etc.). For instance, soil properties,
water availability and topography influence plant growth,
population density or species abundance and consequently

affect vegetation dynamics and thus spatial structure (e.g.
Newbery & Proctor 1984; Peterson & Pickett 1990;
Tilman 1993; Huston & DeAngelis 1994; Couteron &
Kokou 1997; Sabatier et al. 1997; Moreno-Casasola &
Vázquez 1999). Moreover, natural processes such as
birth, development, reproduction, competition, preda-
tion and senescence can induce a spatially heterogene-
ous pattern of populations (e.g. Sterner et al. 1986;
Kenkel 1988; Forget 1994; Blate et al. 1998; Couteron
1998; Desouhant et al. 1998). Because the spatial or-
ganization of individuals in an ecosystem depends, to a
great extent, on biological processes (Begon et al. 1986),
heterogeneity of the spatial structure is often considered
as the expression of a functional heterogeneity (Kolasa
& Rollo 1991).

As far as sessile organisms are concerned, hetero-
geneity applies to the point pattern describing their
physical location. Spatial point patterns that vary in a
systematic way from place to place are thus called
heterogeneous (Ripley 1981). However, interpretations
of spatial variations of point locations in a specific study
area may differ depending on observation scales: as
compared with the size of the study area, fine-scale
variations can generally be considered as elements of
structure and broad-scale variations as heterogeneity
(e.g. Wiens 1989; Kolasa & Rollo 1991; Holling 1992;
He et al. 1994; Goreaud 2000). For instance, the patchy
distribution of a tree species often determines repeated
structures at a forest scale, whereas a single patch gener-
ates heterogeneity at a finer scale of a sampling plot.

Analysis of the spatial structure of heterogeneous
point patterns is difficult, because the simple methods
used to analyse spatial point patterns have been devel-
oped for homogeneous point patterns, i.e. for patterns
resulting from stationary point processes whose proper-
ties are invariant under translation (e.g. Pielou 1969;
Ripley 1981; Diggle 1983; Greig-Smith 1983; Upton &
Fingleton 1985; Stoyan et al. 1987; Cressie 1993). In-
deed, these methods often use indices or functions that
are averaged over the whole study area and thus only
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make sense for homogeneous processes. The classical
exploratory approach with these methods is to compare
a given point pattern to one generated by a Poisson
process which corresponds to the null hypothesis of
complete spatial randomness (CSR; Diggle 1983) and a
stationary point process. For non-stationary processes
the null hypothesis of CSR should be represented by
inhomogeneous Poisson or Cox processes (see, for in-
stance, Diggle 1983), but the corresponding mathemati-
cal tools are quite complicated (Dessard 1996; Batista &
Maguire 1998). In practice, when one computes simple
indices or functions of spatial statistics, one assumes, at
least implicitly, that the underlying point process is
stationary, i.e. that the pattern is homogeneous. This can
sometimes lead to misinterpretation of spatial structure
when the pattern is actually heterogeneous.

One solution is to define, within a heterogeneous
study area, some smaller homogeneous subplots and to
analyse the spatial structure within these separately.
Two cases have to be distinguished, depending on the
nature of the factor generating heterogeneity (Legendre
& Legendre 1998). When an exogenous factor of het-
erogeneity is identified and mapped, one can partition
the pattern into subplots corresponding respectively to
different values of this factor. For instance, Collinet
(1997; see also Forget et al. 1999 and Goreaud & Pélissier
1999) defined subplots of homogeneous edaphic prop-
erties from a soil map, in order to analyse the spatial
structure of tree species in a rain forest of French Guiana.
The problem is more difficult to solve when no exog-
enous factor responsible for heterogeneity of the point
pattern is known.

This paper proposes a practical approach, intended
for ecologists, based on the detection of endogenous
variation of the pattern using local density and second-
order local neighbour density functions that allow de-
lineation of irregularly shaped and internally homoge-
neous patterns. The basic theory and functions are pre-
sented, followed by two applications of forest ecologi-
cal data sets to demonstrate how the method can avoid,
in simple cases of heterogeneity, misinterpretations of
the spatial structure from Ripley's (1976, 1977) K-func-
tion which has been previously adapted to analyse plots
of irregular shape (Goreaud & Pélissier 1999).

Theory

When no exogenous factor responsible for heteroge-
neity of a point pattern is identified, some homogeneous
subplots can be defined from endogenous local proper-
ties of the pattern. Let us call f (x,y) such a local property
related to the point pattern of interest (e.g. density, mean
height, species composition). The map of f (x,y) can play

the same role as the map of an exogenous factor: homo-
geneous subplots can be defined as those that share the
same or arbitrarily similar ranges of values of f (x,y). In
this paper, we propose the use of local density and
second-order local neighbour density functions as en-
dogenous factors to define homogeneous subplots.

Local density

Density, which corresponds to the number of points
per unit area, is the simplest first-order characteristic of
a point pattern. At any location, a value of this density is
estimated on a small sampling region of area s by:

ˆ( , ) ( ) /n x y N s s= (1)

where N(s) corresponds to the number of points in s. For
a homogeneous Poisson process of intensity λ, we have:

E [n(x,y)] = λ (2)

In this case, N(s) follows a Poisson distribution with
parameter λs.

In this paper, the values of n̂ (x,y) were estimated by
computing N(s) at each node of a systematic grid of
elementary side a and covering the whole study area.
The sampling region s is a circle of radius r, centred on
the corresponding node. Thus, at the locations (x,y) near
the boundary of the study area, the number of points in
the sampling region is underestimated. In order to take
this edge effect into account, we used the correction
factor proposed by Ripley (1977) for his K-function: the
contribution of point i to N(s) corresponds to the inverse
of the proportion of the perimeter of the circle centred at
the node and passing through i, which is inside the study
area (e.g. Goreaud & Pélissier 1999).

Note that, if a < 2r, the sampling regions overlap and
the corresponding values of N(s) are not independent, a
situation quite usual in practice when the study region is
small and the number of sampling points is high. Non-
independence between samples prohibits formal statis-
tical tests of the frequency distribution of N(s) against its
theoretical distribution. Therefore, we used a less rigor-
ous but pragmatic approach, which consists of a com-
bined analysis of the frequency distribution and the map
of N(s) to detect first-order heterogeneity and to parti-
tion the pattern into homogeneous subplots. Fig. 1 illus-
trates this approach on a virtual 1 ha plot where the two
parts (south and north) correspond to independent re-
alizations of Poisson processes with intensities 0.01 and
0.05, respectively (Fig. 1a). The frequency distribution
of N(s) has a clear bimodal shape corresponding to the
mixture of the two Poisson distributions (Fig. 1b).



- A practical approach to the study of spatial structure of heterogeneous vegetation stands - 101

Second-order local neighbour density

The second-order property of a point pattern is re-
lated to the joint density of the occurrence of two points
at a given distance (Ripley 1977; Diggle 1983). It char-
acterises the number of points encountered in the neigh-
bourhood of an arbitrary point of the pattern and allows
interpreting the spatial structure in terms of interaction
processes (aggregation, inhibition, etc.).

Sometimes, overall (first-order) local density is ho-
mogeneous  while the fine-scale structure varies from
one place to another within the study area. In this case
the second-order characteristic of the pattern is termed
heterogeneous. To allow close inspection of these char-
acteristics of spatial patterns, we define an individual
second-order local neighbour density function:

ni(r) = Ni(r)/πr2, (3)

where Ni(r) corresponds to the number of neighbours
within a distance r of a given point i of the pattern. For
points located near the boundary of the study area, the
edge effect is corrected, as previously, using Ripley's
(1977) local correcting factor. The function ni(r) is pro-
portional to the individual function proposed by Getis &
Franklin (1987) from Ripley's K-function and can be
interpreted in terms of spatial structure around each point
i. For a Poisson pattern of N points in an area A, the
expected value of ni(r) at any distance r is (N–1)/A.

Compared to this constant value, a given estimation of
ni(r) gives an idea of the local structure (aggregated or
regular) around point i. Because ni(r) is linked to a
specific point, it cannot be considered as a stochastic
function of the process so no formal test is available.
However, the frequency distribution and map of the
values of ni(r) at a given distance r can be used, as
above, to detect second-order heterogeneity.

Spatial analysis within homogeneous subplots

We chose to analyse spatial structure within homo-
geneous subplots by use of Ripley's K-function, which
has the advantage of describing the spatial structure at
different ranges simultaneously (Cressie 1993) and is a
standardized measure that allows comparison of spatial
patterns of various intensities. It has been used recently
in many studies in plant ecology e.g. desert shrubs
(Skarpe 1991; Haase et al. 1996), temperate (Duncan
1991; Moeur 1993; Szwagrzyk & Czerwczak 1993;
Goreaud et al. 1998) and tropical forests (Pélissier 1998;
Barot et al. 1999; Forget et al. 1999).

Under the assumptions of homogeneity (or statio-
narity) and isotropy (invariance by rotation) Ripley's K-
function is defined for a process of intensity λ, so that
λK(r) is the expected number of neighbours in a circle
of radius r centred on an arbitrary point of the pattern
(Ripley 1977 for more details). Instead of the K-function,
the modified L-function, the classical estimator for which

Fig. 1. Simulated heterogeneous point pattern in a 100 m × 100m virtual plot. a. The two parts (south and north) correspond to
independent realisations of Poisson processes with intensities 0.01 and 0.05, respectively. b. Frequency distribution of the local
density function N(s), computed in circles of radius 12.5 m regularly distributed on a systematic grid of 5 m × 5 m. The curve
corresponds to the theoretical values expected for the mixture of the two Poisson distributions.
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ˆ( ) ˆ ( ) /L r K r r= −π (4)

is generally preferred (Besag 1977). ˆ( )L r  has a more
stable variance than ˆ ( )K r  and is easier to interpret: L(r)
= 0 under CSR; L(r) < 0 indicates that there are fewer
neighbours within a distance r off an arbitrary point of
the pattern than expected under CSR, so that the pattern
tends to be regular; L(r) > 0 indicates that there are more
neighbours within a distance r off an arbitrary point of
the pattern than expected under CSR, so that the pattern
tends to be clustered. For points closer to the boundary
of the plot than to a neighbouring point of the pat-
tern, ˆ ( )K r  requires an edge effect correction. In a previ-
ous paper, Goreaud & Pélissier (1999) introduced pro-
cedures that extend the use of Ripley's (1977) local
correcting factor of edge effects to analysis of plots of
irregular shape.

Worked examples: two applications in forest ecology

Data sets

We tested our approach on two examples taken from
the field of forest ecology. The first data set represents a
mixed Quercus petraea-Fagus sylvatica temperate for-
est stand in the managed Haye Forest, France. In this
stand, tree growth and survival are highly dependent on
the spatial interactions between trees (Goreaud et al.
1999). In order to understand the inter-specific relations
between the species, Goreaud (2000) analysed a 1 ha
plot in a 140 yr-old stand (Pardé 1981). He showed that
this plot exhibited a structural heterogeneity of den-
sity, mean height of trees and mixture rate of trees with
DBH ≥ 10 cm, and hypothesised that this reflected
heterogeneity of a soil factor. As no soil data were
available, we used the local density (both species pooled)
as an endogenous indicator of heterogeneity.

The second example data set is from an experimental
plot in moist evergreen forest of Uppangala, Western
Ghats, India (Pascal & Pélissier 1996), designed to
monitor and study the long-term natural dynamics
(Elouard et al. 1997a, b). In this forest, Pélissier (1997,
1998) showed a macro-heterogeneity of the spatial struc-
ture of trees with DBH ≥ 10 cm, which was related to
local variations of the dynamic processes ensuring for-
est renewal. In this paper a 0.8 ha plot with apparently
homogeneous first-order characteristics, but heteroge-
neous second-order properties, was analysed.

Methods

In these examples we used local density and second-
order local neighbour density functions as parameters to
delineate contour lines of homogeneous subplots. The
theory of regionalized variables gives a general frame-
work to interpolate contour lines from values estimated
at the nodes of a systematic grid (Matheron 1965; Cressie
1993). For the sake of simplicity, we used linear interpo-
lations (Cleveland 1993) from values of local density
and the second-order local neighbour density functions
estimated at the nodes of a 10  m × 10 m grid using the
Lowess method (local weighted scatter-plot smoothing;
Cleveland 1979). Local regression was computed over a
number n of nearest neighbours, chosen to minimise the
mean smoothing error (Cleveland & Devlin 1988). Af-
ter drawing the contour lines, the homogeneous sub-
plots were approximated by polygons in order to calcu-
late Ripley's K-function with edge effect correction for
plots of irregular shape.

In order to test the null hypothesis of spatial random-
ness, we computed a 95% confidence interval of
ˆ( )L r using the Monte Carlo method (Besag & Diggle

1977) with 1000 simulated random patterns. At a given

distance r, a value of ˆ( )L r outside the confidence inter-
val is interpreted as a significant departure from CSR
towards clustering or regularity. When the function
stays outside the confidence interval at large distances,
we can consider that the pattern is heterogeneous, be-
cause most of the points are concentrated in a dense part
of the study area which could be interpreted as a cluster
approaching the size of the study area. This cluster
could not be considered as a repeated structure at the
scale of the study region.

Computer programs used were implemented in C
language and can be obtained on request to the authors.
Modules of spatial data analysis and graphical display
are at present available with documentation from the
ADE-4 homepage (http://pbil.univ-lyon1.fr/ADE-4/;
Thioulouse et al. 1997). The procedures to compute
Lowess and to draw the contour lines were performed
using ADE-4 package.

Results for example 1: first-order heterogeneity

We computed local density in circles of radius 12.5 m
centred at the nodes of a 5 m × 5  m systematic grid
covering the 1 ha plot of the managed Haye Forest,
France. This design allowed study of the spatial struc-
ture up to 25 m, but implied that the sampling regions
were not independent. However, the non-Poisson and
slightly bimodal shape of the frequency distribution of
N(s) (number of points per circle) indicated heterogene-
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ity of the first-order characteristic of the pattern and
allowed identification of two ranges of values [3;13]
and [14;26] (Fig. 2).

In order to partition the plot into homogeneous sub-
plots, we used the Lowess method to predict the values of
the local density function at each node of a 10 m × 10 m
systematic grid. The local regression was computed over
the 12 nearest sampling points to minimise the mean
smoothing error. We then delineated the contour lines of
N(s) = 13 and N(s) = 14, by interpolation of the predicted
values (Fig. 3). The use of a buffer zone between the two
subplots improved their respective homogeneity by avoid-
ing unclear transitions between the dense and sparse parts
of the plot.

We then computed the L-function for the entire
rectangular plot and within the two polygonal subplots.
Trees in the buffer zone were not taken into account. In
the entire plot (Fig. 4a) the curve exhibited a divergence
towards clustering at large distances due to broad-scale
heterogeneity related to the presence of a denser part.
This prevents interpretation of fine-scale structure from
the whole data set because L(r) averages the characteris-
tic structures of the two subplots. On the contrary, when
computed within each subplot, the L-function remained
within the confidence interval at large distances, which
means that each subplot was homogeneous. Both within
subplots analyses exhibited a significant regularity in
the range 0-8 m, but with a higher intensity in the sparse
one (Fig. 4b-c).

Results for example 2: second-order heterogeneity

In the 0.8 ha plot of the moist evergreen forest of
Uppangala, India, the frequency distribution of the local
density N(s) (not shown) was unimodal, following a
theoretical Poisson distribution. But, when computed
over the entire plot the L-function, although lying within
the confidence interval at large distances, showed a
combination of an element of attraction at small dis-
tances (1 m) with an element of repulsion in the 2-7 m
range (Fig. 5a).

Fig. 3. Location map of 231 trees in a 110 m × 90 m plot in
Haye Forest, France (example 1). The dotted lines were ap-
proximated from the contour lines of the local density, N(s) =
13 and N(s) = 14 (inner curve).

Fig. 2. Distribution of the local density function computed in circles of radius 12.5 m centred at the nodes of a 5m × 5 m systematic
grid in a 110m × 90 m plot of the managed mixed Quercus-Fagus stand of Haye Forest, France (example 1). a. Frequency
distribution of N(s) with the theoretical curve of the homogeneous Poisson distribution expected with an intensity parameter
corresponding to the first mode. b. Spatial distribution of N(s).
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Fig. 5. Graphs of the L-function for the natural moist ever-
green forest of Uppangala, Western Ghats, India (example 2).
Function computed: a. Over the entire 100 m × 80 m rectangu-
lar plot; b. Within the polygonal eastern part of the plot; c.
Within the polygonal western part of the plot. Shaded enve-
lopes correspond to the 95% confidence interval of the null
hypothesis of complete spatial randomness.

Fig. 4. Graphs of the L-function for the managed Haye Forest,
France (example 1). Function computed: a. Over the entire
110 m × 90 m rectangular plot; b. Within the polygonal dense
part of the plot; c. Within the polygonal sparse part of the plot.
Shaded envelopes correspond to the 95% confidence interval
of the null hypothesis of complete spatial randomness.

We expected that the attraction effect would only
concern one part of the plot so computed the second-
order local neighbour density function, taking r = 1 m.
The frequency distribution of this statistic showed that a
small proportion of trees had at least one neighbour
within this distance. The spatial distribution showed,
however, that these trees were more concentrated in the
western part of the plot, thus representing second-order
heterogeneity (Fig. 6).

In order to delineate homogeneous subplots, we used
the Lowess method with the 20 nearest neighbours to
predict the values of ni(r) at each node of a 10 m × 10 m
grid. We then drew by interpolation the contour line of the
value ni(r) = (N –1)/A = 0.07262. Twenty neighbours
did not represent the minimum smoothing error, but
corresponded to the range over which the smoothing
error stabilised and the subplots delineated remained
almost invariant. Fig. 6b shows the two polygonal

subplots approximated from the contour line.
The L-functions computed within these subplots in-

dependently, showed that the two peaks observed in the
entire plot were separate. Trees in the western part (Fig.
5b) exhibited a significant attraction effect at 1 m, while
trees in the eastern part (Fig. 5c) exhibited a significant
regularity in the range 2-7 m. This result emphasises
that, even when the first-order properties of the point
pattern are homogeneous, heterogeneous second-order
characteristics can lead to different interpretations in
terms of between-tree interactions.

Discussion and Conclusions

Because natural processes are highly dependent on
the local environment (soil, topography, etc.) which is
often heterogeneous, natural communities are seldom
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homogeneous. Therefore, spatial heterogeneity should
be systematically investigated with the aim of being
adequately taken into account in statistical analysis
(Dutilleul 1993). Classical methods to analyse spatial
point patterns usually involve the assumptions of homo-
geneity and isotropy. Our examples clearly illustrate
how various kinds of heterogeneity can affect the meth-
ods of spatial data analysis, such as the frequently-used
Ripley's function. Some methods dealing with anisotropy,
such as orientation correlation functions (Stoyan & Benes
1991) and spectral analysis (Mugglestone & Renshaw
1996) have been applied to biological data, but very few
simple methods to deal with heterogeneous point pat-
terns are available.

The heterogeneity of a point pattern can easily be
detected when the available data exhibit a potential
exogenous factor responsible for this heterogeneity. Even
if this factor is not entirely mapped homogenous sub-
plots can be delineated through interpolations and con-
tour lines. The problem is analogous when the structural
heterogeneity concerns the first-order characteristics of
the pattern, and the local density function can help in
partitioning the pattern into homogeneous subplots. It
will, however, often be more insidious when heteroge-
neity only affects the second-order properties of the
pattern, in which case the superposition of various ef-
fects can occur. The method proposed in this paper can
help in dealing with all these aspects of heterogeneity,
following the principle that broad-scale environmental
variations will tend to produce aggregated patterns and
that these variations will be less pronounced at smaller
scale. The major determinant of the pattern will then be

Fig. 6. Distribution of the second-order local neighbour density function computed in circles of radius 1 m centred on each point of
the pattern in a 100 m × 80 m experimental plot of the moist evergreen forest of Uppangala, Western Ghats, India (example 2). a.
Frequency distribution of  Ni(r) for r = 1 m. b. Location map of 582 trees in the experimental plot with black points indicating Ni(r)
≥ 1. The dotted line was approximated from the contour curve of the value of the second-order local neighbour density ni (r) =0.07262
at r = 1 m.

the nature of the interactions among individuals them-
selves (Diggle 1983).

The proposed approach is based on the delineation,
within a heterogeneous study area, of subplots that
could be considered as internally homogeneous, and
characterization of the spatial pattern within these sub-
plots. It is a general approach that could be used with most
methods of spatial statistics subjected to preliminary hy-
potheses of homogeneity, in particular those based on
distance measurements (see Diggle 1983; Upton &
Fingleton 1985; Cressie 1993). However, using Ripley's
(1976, 1977) second-order neighbourhood analysis
adapted to analyse plots of irregular shape (Goreaud &
Pélissier 1999) has the advantage of involving a set of
similar functions to detect heterogeneity, to define the
homogeneous subplots and then to characterise their in-
ternal spatial structure, thus reducing conceptual invest-
ment and computation time. Alternatively, this redun-
dancy could lead to some bias such as the detection of
non-significant random variations, although this risk is
limited when the definition of the homogeneous sub-
plots is carried out at a larger scale than that on which
the structure of interest occurs. Such an approach is of
course expected to be less precise than a statistical test
of a specific spatial heterogeneous process (for instance,
the spatial clustering processes in statistical epidemi-
ology: Wartenberg & Day 1988; Diggle & Chetwynd
1991), but it is far easier to use for exploratory analysis
in ecology when the underlying processes are unknown.
In our examples, the method was successfully validated,
as the final computation of the L-function in each homo-
geneous subplot stays within the confidence interval of
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the null hypothesis of CSR at large distances.
The definition of homogeneous subplots will not be

completely objective because the accuracy of the bound-
ary depends on several parameters. Firstly, the local
density, the number and the radius of the sampling
regions limit the maximum size of the studied struc-
tures and samples may not be independent preventing
the use of formal tests. Secondly, the contour delinea-
tion may vary according to the method used, linear
interpolation from values predicted by the Lowess
procedure allows variation of both the degree of smooth-
ing of the local regression and the drawing resolution
of the contour lines. Thirdly, the complexity of the
polygons used to approximate the shape of the sub-
plots determines the computation time and can limit
the accuracy of the boundary definition. Finally, the
definition of the subplots can sometimes be imprecise
and a buffer zone between the different subplots can be of
some use to avoid unclear transitions, as in example 1.

This paper deals with simple cases with a single
factor of heterogeneity, but the method could be ex-
tended to more complex systems with several hierar-
chical levels of heterogeneity (Kolasa & Rollo 1991),
for instance from a broad-scale exogenous macro-
heterogeneity to first- and second-order fine-scale vari-
ations. The same general framework with the same
adaptation of edge-corrections to irregular shapes could
also be used with other functions of second-order
neighbourhood analysis derived from Ripley's K-func-
tion and dealing with marked point patterns (Lotwick
& Silverman 1982; Diggle 1983; Penttinen et al. 1992;
Goulard et al. 1995). In this case, homogeneity con-
cerns the distribution of both the points and the marks
which can be qualitative (e.g. tree species) or quantita-
tive (e.g. tree diameter, height) characteristics of the
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